The accelerator R&D facility SINBAD (Short Innovative Bunches and Accelerators at DESY) will drive multiple independent experiments in the fields of production of ultra-short electron bunches and tests of advanced high gradient acceleration concepts.
The SINBAD-ARES (Accelerator Research Experiment at SINBAD) linac has been designed to allow the production of high brightness ultra-short electron bunches with excellent arrival-time stability. The accelerator will be used to study experimentally the optimization of the brightness for fs long electron bunches. Such electron bunches, with tunable characteristics, will be then injected into novel accelerators realized in the context of the ATHENA project, the ACHIP international collaboration and the ARIES program. In this paper we describe the principal characteristics of the linac design, we underline the technical challenges connected to the production and characterization of fs bunches and we report on the status of the installation and commissioning.
SINBAD (Short and INnovative Bunches and Accelerators at DESY) facility will host multiple experiments relating to ultra-short high brightness beams and novel experiments with ultra-high gradient. ARES (Accelerator Research Experiment at SINBAD) Linac is an S-band photo injector to produce such electron bunches at around 100 MeV. The Linac will be commissioned in stages with the first stage corresponding to gun commissioning. In this paper, we present studies about the scheme adopted for the alignment of focusing solenoid for the ARES gun. The method is bench marked using ASTRA simulations. Moreover the effect of misalignment of the solenoid on the emittance of space charge dominated scheme and its compensation is also discussed.
Over the years, the generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics and advanced high-gradient accelerating schemes, such as plasma accelerators and dielectric laser accelerators. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D facility ARES at DESY (Deutsches Elektronen-Synchrotron) will provide such probe beams in the upcoming years. After the setup of the normal-conducting, radio-frequency (RF) photoinjector and linear accelerating structures, ARES successfully started the beam commissioning of the RF gun. This paper gives an overview of the ARES photoinjector setup and summarizes the results of the gun commissioning process. The quality of the first electron beams is characterized in terms of charge, momentum, momentum spread and beam size. Additionally, the dependencies of the beam parameters on RF settings are described. All measurement results of the characterized beams fulfill the requirements for operating the ARES linac with this RF photoinjector.
The accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments, including the acceleration of ultrashort electron bunches and the testing of advanced high-gradient acceleration concepts. The SINBAD-ARES (Accelerator Research Experiment at SINBAD) setup hosts a normal conducting RF photoinjector generating a low-charge electron beam, which is afterwards accelerated by an S-band linac section. The linac as well as a magnetic chicane will allow the production of ultrashort bunches with excellent arrival-time stability. The high brightness beam has then the potential to serve as a test beam for next-generation compact acceleration schemes. The setup of the SINBAD-ARES facility will proceed in stages. We report on the current status of the ARES RF gun commissioning and linac setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.