In recent years, aquaponic systems have gained significant popularity as soilless agriculture systems for organic fruits and vegetables production with concomitant remediation of aquaculture effluent. Aquaponics is a potential sustainable food production system that integrates aquaculture with hydroponics in which nitrogen-rich effluent from the fish production is utilized for plant growth. Because nitrogen is one of the most important inputs in an aquaponic system, it is critical to investigate the nitrogen transformations in the system for enhanced recovery of resources. Since studies on nitrogen transformations and nitrogen utilization efficiency (NUE) in aquaponic systems have been very limited, this review critically examines the important fates of nitrogen from input to outputs (e.g., ammonia nitrogen generation, nitrification, nitrate assimilation and nitrogen loss) to improve NUE in aquaponic systems. Various factors affecting the nitrogen transformations are also discussed. Furthermore, an example of nitrogen imbalance between nitrate uptake and nitrate generation rates in an aquaponic system was demonstrated. This review aims to advance our current understanding of nitrogen transformations and outlines future research needs in aquaponic systems, a sustainable model for efficient water and nutrient managements, and food production.
Aquaponics is a technology for food production (fish and vegetables/fruits) with concomitant remediation of nitrogen-rich aquaculture effluent. There is, however, a critical need to improve the nitrogen use efficiency (NUE) in aquaponics. Here, we employed quantitative polymerase chain reactions and next-generation sequencing to evaluate the bacterial communities and their links to nitrogen transformations for improving NUEs in four bench-scale plant-based floating-raft aquaponics (pak choi, lettuce, chive, and tomato) and three pH levels (7.0, 6.0, and 5.2). Low relative abundance of nitrifiers in plant roots and biofilters suggested nitrogen loss, which decreased NUE in aquaponics. Low pH level was a major factor that shifted the microbial communities and reduced the relative abundance of nitrifiers in aquaponic systems, leading to total ammonia nitrogen accumulation in recirculating water. In plant roots, the abundance of nitrite-oxidizing bacteria (e.g., Nitrospira spp.) did not decrease at low pH levels, suggesting the benefit of growing plants in aquaponics for efficient nitrification and improving NUE. These findings on microbial communities and nitrogen transformations provided complementary strategies to improve the performance of the aquaponics regarding water quality and extent of nutrient recovery from aquaculture effluent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.