Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.
We conducted sorption experiments with stable cesium (133Cs) solution in different organic matter samples, aiming to understand the sorption of radiocesium (134Cs and 137Cs) in the initial throughfall by fresh plant residues (e.g., needles, wood, and bark from Japanese cedar trees) in the Oi horizon in forests in Fukushima. Among the organic matter samples, bark and wattle tannin sorbed relatively large amounts of Cs, whereas wood and cellulose powder sorbed small amounts. In contrast, samples containing clay minerals showed much higher Cs sorption. We also conducted desorption experiments, and suggested that Cs on the organic matter samples were relatively mobile.
Radiocesium (137Cs) released in the Fukushima Dai-ichi Nuclear Power Plant accident is still cycling in the forest ecosystem. We examined the mobility of 137Cs in the external parts—leaves/needles, branches, and bark—of the two major tree species in Fukushima, Japanese cedar (Cryptomeria japonica) and konara oak (Quercus serrata). This variable mobility will likely lead to spatial heterogeneity of 137Cs and difficulty in predicting its dynamics for decades. We conducted leaching experiments on these samples by using ultrapure water and ammonium acetate. In Japanese cedar, the 137Cs percentage leached from current-year needles was 26–45% (ultrapure water) and 27–60% (ammonium acetate)—similar to those from old needles and branches. In konara oak, the 137Cs percentage leached from leaves was 47–72% (ultrapure water) and 70–100% (ammonium acetate)—comparable to those from current-year and old branches. Relatively poor 137Cs mobility was observed in the outer bark of Japanese cedar and in organic layer samples from both species. Comparison of the results from corresponding parts revealed greater 137Cs mobility in konara oak than in Japanese cedar. We suggest that more active cycling of 137Cs occurs in konara oak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.