Connexin genes expressing gap junction proteins have tumor-suppressive effects on primary cancers with certain cell specificity, but the suppressive effects on metastatic cancers are still conflicting. In this study, we show that connexin32 (Cx32) has a strong tumor-suppressive effect on a human metastatic renal cell carcinoma cell line (Caki-1 cell). Cx32 expression in Caki-1 cells reduced in vitro malignant phenotypes of the cells such as anchorage independency and invasion capacity. Furthermore, the Cx32 expression drastically reduced the development of Caki-1 cells in nude mice. We also determined that Cx32 reduced the malignant phenotypes in Caki-1 cells mainly through the inactivation of Src signaling. Especially, Cx32-dependent inactivation of Src decreased the production of vascular epithelial growth factor (VEGF) via the suppression of signal transducers and activators of transcription 3 (Stat3) activation, and we confirmed this result using short interfering RNA. In nude mice, Cx32-transfected Caki-1 cells showed lower serum level of VEGF comparing mock transfectant, and the development of the cells in nude mice positively related to the VEGF level. These data suggest that Cx32 acts as a tumor suppressor gene in Caki-1 cells and that the tumor-suppressive effect partly depends on the inhibition of Src-Stat3-VEGF signal pathway.
Although the constitute activation of the Src family of kinases (Src) has been established as a poor prognostic factor in several types of cancer, the role of Src in renal cell carcinoma (RCC) has not been defined. This study aimed to determine whether Src could contribute to the appearance of malignant phenotypes in RCC. The role of Src in the appearance of malignant phenotypes in RCC was examined in two human renal cancer cell lines, Caki-1 from human metastatic RCC and ACHN from human primary RCC. Src activity in Caki-1 cells was higher than that in ACHN cells, and this difference corresponded to the difference of PP1 (a Src family inhibitor)-induced cytotoxicity on the two cells. The difference in cytotoxicity between the cells did not depend on cell cycle regulation but on the induction of apoptosis, and the difference in apoptosis particularly related to the reduction of the Bcl-xL level. Furthermore, in Caki-1 cells with higher Src activity, Src stimulated the production of vascular endothelial growth factor (VEGF), partially via the activation of Stat3, and the inhibition of Src activity caused a reduction of the VEGF level in serum, angiogenesis, and tumor development in a xenograft model. These results suggested that Src contributed to the appearance of malignant phenotypes in renal cancer cells, particularly due to the resistance against apoptosis by Bcl-xL and angiogenesis stimulated by Src-Stat3-VEGF signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.