With the development of the online platforms and the Internet of Things (IoT), various transportation services have been provided, and the lifestyle of the general public has changed significantly. However, the speed of development of technologies and services for the mobility handicapped has been relatively slow. Accordingly, in this paper, the smart mobility patent data for the mobility handicapped is subdivided through clustering to derive the mobility handicapped-related vacant technologies, and the prospect of the vacant technology is verified. For each cluster, a technology level map is generated in consideration of the technology growth level and the scope of authority of the vacant technology derived through the generative topographic map (GTM) patent map, and the level of the vacant technology is checked in terms of quantity and quality. Both indicators perform time series analyses on superior technology to predict technology trends and determine the technology’s promisingness. Unlike the precedent studies that focused only on quantitative analysis methods, this paper identified the usefulness of the technology through clustering and various verification processes and materialized it as a vacant technology that is applicable to actual R&D. Accordingly, through this empirical paper, it is possible to understand the current level of vacant technology in smart mobility for the mobility handicapped and establish an R&D strategy to prevent monopoly in technology in the future market and maintain competitiveness. It can also be utilized for new technology development in consideration of convergence with currently developed technology.
Aviation security X-ray equipment currently searches objects through primary screening, in which the screener has to re-search a baggage/person to detect the target object from overlapping objects. The advancements of computer vision and deep learning technology can be applied to improve the accuracy of identifying the most dangerous goods, guns and knives, from X-ray images of baggage. Artificial intelligence-based aviation security X-rays can facilitate the high-speed detection of target objects while reducing the overall security search duration and load on the screener. Moreover, the overlapping phenomenon was improved by using raw RGB images from X-rays and simultaneously converting the images into grayscale for input. An O-Net structure was designed through various learning rates and dense/depth-wise experiments as an improvement based on U-Net. Two encoders and two decoders were used to incorporate various types of images in processing and maximize the output performance of the neural network, respectively. In addition, we proposed U-Net segmentation to detect target objects more clearly than the You Only Look Once (YOLO) of Bounding-box (Bbox) type through the concept of a ''confidence score''. Consequently, the comparative analysis of basic segmentation models such as Fully Convolutional Networks (FCN), U-Net, and Segmentation-networks (SegNet) based on the major performance indicators of segmentation-pixel accuracy and mean-intersection over union (m-IoU)-revealed that O-Net improved the average pixel accuracy by 5.8%, 2.26%, and 5.01% and the m-IoU was improved by 43.1%, 9.84%, and 23.31%, respectively. Moreover, the accuracy of O-Net was 6.56% higher than that of U-Net, indicating the superiority of the O-Net architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.