Transcription factor (TF)-based metabolite detection mainly depends on TF-regulated gene expression in cells. From TF activation to gene transcription and translation, the signal travels a relatively long way before it is received. Here, we propose a TF-splinting duplex DNA nanoswitch to detect metabolites. We show its feasibility using tryptophan repressor (TrpR) to detect Ltryptophan as a model. The assay has been optimized and characterized after obtaining a proof of concept, and the detection of L-tryptophan in complex biological samples is feasible. Unlike an equivalent gene expression approach, the whole process is a singlestep, enzyme-free, and signal-on method. It can be completed within 20 min. This proposed TF-splinting duplex has the potential to be applied to the quick and convenient detection of other metabolites or even TFs.
Dumbbell probe (DP) attracts increasing interests in rolling circle amplification (RCA). A universal DP production method through cleavage-ligation of hairpin was proposed and optimized. The production is characterized by restriction endonuclease (RE)-induced cleavage ends ligation. It has the advantage of phosphorylation-free, splint-free and purification-free. To optimize designing, we found that the position of RE cleavage sequence in the stem and the primer position in the loop affected the formation and amplification of DP obviously. Both sticky and blunt ends cleaved by RE produce DP efficiently. Moreover, we introduced this DP into circle to circle (C2C) RCA based on the same cleavage-ligation principle, and acquired high sensitivity. By combining a two-ligation design and the C2C strategy, specificity for detecting let-7 family members was increased extremely. Furthermore, coreaction of different steps facilitated convenient formation and amplification process of DP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.