Van Glabbeek (1990) presented the linear time -branching time spectrum of behavioral semantics. He studied these semantics in the setting of the basic process algebra BCCSP, and gave finite, sound and ground-complete, axiomatizations for most of these semantics. Groote (1990) proved for some of van Glabbeek's axiomatizations that they are ω-complete, meaning that an equation can be derived if (and only if) all of its closed instantiations can be derived. In this paper we settle the remaining open questions for all the semantics in the linear time -branching time spectrum, either positively by giving a finite sound and ground-complete axiomatization that is ω-complete, or negatively by proving that such a finite basis for the equational theory does not exist. We prove that in case of a finite alphabet with at least two actions, failure semantics affords a finite basis, while for ready simulation, completed simulation, simulation, possible worlds, ready trace, failure trace and ready semantics, such a finite basis does not exist. Completed simulation semantics also lacks a finite basis in case of an infinite alphabet of actions.
Abstract. We present a finite ω-complete axiomatization for the process algebra BCCSP modulo failure semantics, in case of a finite alphabet. This solves an open question by Groote [12].
We consider two-player partial-observation stochastic games where player 1 has partial observation and player 2 has perfect observation. The winning condition we study are ω-regular conditions specified as parity objectives. The qualitative analysis problem given a partial-observation stochastic game and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, they were shown to be decidable in 2EXPTIME under finite-memory strategies. We improve the complexity and show that the qualitative analysis problems for partial-observation stochastic parity games under finite-memory strategies are EXPTIME-complete; and also establish optimal (exponential) memory bounds for finite-memory strategies required for qualitative analysis.
Abstract. The discussion in the computer-science literature of the relative merits of linear-versus branching-time frameworks goes back to early 1980s. One of the beliefs dominating this discussion has been that the linear-time framework is not expressive enough semantically, making linear-time logics lacking in expressiveness. In this work we examine the branching-linear issue from the perspective of process equivalence, which is one of the most fundamental notions in concurrency theory, as defining a notion of process equivalence essentially amounts to defining semantics for processes. Over the last three decades numerous notions of process equivalence have been proposed. Researchers in this area do not anymore try to identify the "right" notion of equivalence. Rather, focus has shifted to providing taxonomic frameworks, such as "the linear-branching spectrum", for the many proposed notions and trying to determine suitability for different applications. We revisit this issue here from a fresh perspective. We postulate three principles that we view as fundamental to any discussion of process equivalence. First, we borrow from research in denotational semantics and take contextual equivalence as the primary notion of equivalence. This eliminates many testing scenarios as either too strong or too weak. Second, we require the description of a process to fully specify all relevant behavioral aspects of the process. Finally, we require observable process behavior to be reflected in its input/output behavior. Under these postulates the distinctions between the linear and branching semantics tend to evaporate. As an example, we apply these principles to the framework of transducers, a classical notion of state-based processes that dates back to the 1950s and is well suited to hardware modeling. We show that our postulates result in a unique notion of process equivalence, which is trace based, rather than tree based.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.