We report here a series of nontoxic and stable bismuth-based perovskite nanocrystals (PeNCs) with applications for photocatalytic reduction of carbon dioxide to methane and carbon monoxide. Three bismuth-based PeNCs of general chemical formulas A 3 Bi 2 I 9 , in which cation A + = Rb + or Cs + or CH 3 NH 3 + (MA + ), were synthesized with a novel ultrasonication top-down method. PeNC of Cs 3 Bi 2 I 9 had the best photocatalytic activity for the reduction of CO 2 at the gas−solid interface with formation yields 14.9 μmol g −1 of methane and 77.6 μmol g −1 of CO, representing a much more effective catalyst than TiO 2 (P25) under the same experimental conditions. The products of the photocatalytic reactions were analyzed using a gas chromatograph coupled with a mass spectrometer. According to electron paramagnetic resonance and diffuse-reflectance infrared spectra, we propose a reaction mechanism for photoreduction of CO 2 via Bi-based PeNC photocatalysts to form CO, CH 4 , and other possible side products.
The ability to control interparticle forces not only improves the existing nanoparticle (NP) functionalities but paves the way for newer properties as well. A proof of concept in this direction is presented here, wherein the regulation of interparticle forcesrevealing controlled aggre-gationhas been successfully translated into the trapping and scavenging of toxic ions. A perfect balance between the attractive and repulsive forces is achieved by tuning the [+] and [−] ligands on the surface of heterogeneously charged metal NPs. The NP−ion aggregates are stable for ∼2 days, with a visible color change (Δλ max = 12−15 nm), which makes them available for scavenging from the site of action. The incorporation of "potent" forces like repulsions, rather than a mere dilution of attractive forces, is necessary to ensure the formation of controlled aggregates. The net surface charge of NPs is conveniently modified to trap ions irrespective of their charge and binding strength. More importantly, the regulation of interparticle forces imparts a new function of selectivity toward trapping of toxic ions in a carboxylate functionalized NP system. Thus, the present work introduces a conceptually unprecedented approach to impart long-term stability (∼2 days) to NP−ion aggregates by controlling the interparticle forces.
A graphene oxide (GO) film is functionalized with metal (Au) and metaloxide (MoO x ) nanoparticles (NPs) as a hole-extraction layer for highperformance inverted planar-heterojunction perovskite solar cells (PSCs). These NPs can increase the work function of GO, which is confirmed with X-ray photoelectron spectra, Kelvin probe force microscopy, and ultraviolet photoelectron spectra measurements. The down-shifts of work functions lead to a decreased level of potential energy and hence increased V oc of the PSC devices. Although the GO-AuNP film shows rapid hole extraction and increased V oc , a J sc improvement is not observed because of localization of the extracted holes inside the AuNP that leads to rapid charge recombination, which is confirmed with transient photoelectric measurements. The power conversion efficiency (PCE) of the GO-AuNP device attains 14.6%, which is comparable with that of the GO-based device (14.4%). In contrast, the rapid hole extraction from perovskite to the GO-MoO x layer does not cause trapping of holes and delocalization of holes in the GO film accelerates rapid charge transfer to the indium tin oxide substrate; charge recombination in the perovskite/GO-MoO x interface is hence significantly retarded. The GO-MoO x device consequently shows significantly enhanced V oc and J sc , for which its device performance attains PCE of 16.7% with great reproducibility and enduring stability.
Organic–inorganic lead halide perovskite nanocrystals have attracted much attention as promising materials for the development of solid-state light-emitting devices, but the existence of free or bound excitons or the formation of trap states remains under debate. We recorded the temperature-dependent electroabsorption (E-A) and electrophotoluminescence (E-PL) spectra, that is, electric-field-induced change in absorption and photoluminescence spectra, for methylammonium lead tribromide (MAPbBr3) colloidal perovskite nanocrystals, that is, quantum dots (QD), doped in a poly(methyl methacrylate) film in the temperature range of 40–290 K. Based on the results, the binding energy of the exciton (electron–hole pair) was estimated. The exciton binding energy of QD of MAPbBr3 estimated from the absorption and E-A spectra (∼17 meV) is nearly the same as that of a MAPbBr3 polycrystalline thin solid film, while the exciton binding energy estimated from the temperature-dependent PL spectra (∼70 meV) is much greater than that estimated from the absorption profile. The frequency dependence of the E-A intensity observed at 40 and 290 K for the modulated applied electric field indicates a slow ion migration in nanocrystals, which follows the modulation of the applied electric field at a frequency less than 500 Hz. The observed E-A spectra were analyzed with an integral method on assuming the Stark effect; the magnitudes of the changes in electric dipole moment and polarizability following photoexcitation were determined at each temperature from 40 to 290 K. E-PL spectra show that the PL of QD of MAPbBr3 is quenched on the application of an external electric field; the extent of quenching is much greater for trap emission than for exciton emission. Exciton–phonon scattering, which is responsible for the line broadening of the PL spectra, is also discussed based on the temperature-dependent PL spectra.
Overcoming the issue of the stability of tin‐based perovskites is a major challenge for the commercial development of lead‐free perovskite solar cells. To attack this problem, a new organic cation, azetidinium (AZ), is incorporated into the crystal structure of formamidinium tin triiodide (FASnI3) to form the mixed‐cation perovskite AZxFA1‐xSnI3. As AZ has a similar size to FA but a larger dipole moment, hybrid AZxFA1‐xSnI3 films exhibit variation in optical and electronic properties on increasing the proportion of AZ. Trifluoromethylbenzene (CF3C6H5) serves as antisolvent to fabricate smooth and uniform perovskite films for the devices with an inverted planar heterojunction structure. The device performance is optimized to produce the greatest efficiency at x=0.15 (AZ15), for which a power conversion efficiency of 9.6 % is obtained when the unencapsulated AZ15 device is stored in air for 100 h. Moreover, the device retains 90 % of its initial efficiency for over 15 days. The significant performance and stability of this device reveal that the concept of mixed cations is a promising approach to stabilize tin‐based perovskite solar cells for future commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.