In this paper the Binary Search Tree Imposed Growing Self Organizing Map (BSTGSOM) is presented as an extended version of the Growing Self Organizing Map (GSOM), which has proven advantages in knowledge discovery applications. A Binary Search Tree imposed on the GSOM is mainly used to investigate the dynamic perspectives of the GSOM based on the inputs and these generated temporal patterns are stored to further analyze the behavior of the GSOM based on the input sequence. Also, the performance advantages are discussed and compared with that of the original GSOM.
Even with the presence of modern obstetric care, stillbirth rate seems to stay stagnant or has even risen slightly in countries such as England and has become a significant public health concern [1]. In the light of current medical research, maternal risk factors such as diabetes and hypertensive disease were identified as possible risk factors and are taken into consideration in antenatal care. However, medical practitioners and researchers suspect possible relationships between trends in maternal demographics, antenatal care and pregnancy information of current stillbirth in consideration [2]. Although medical data and knowledge is available appropriate computing techniques to analyze the data may lead to identification of high risk groups. In this paper we use an unsupervised clustering technique called Growing Self organizing Map (GSOM) to analyse the stillbirth data and present patterns which can be important to medical researchers.
Humans are used to expressing themselves with written language and language provides a medium with which we can describe our experiences in detail incorporating individuality. Even though documents provide a rich source of information, it becomes very difficult to identify, extract, summarize and search when vast amounts of documents are collected especially over time. Document clustering is a technique that has been widely used to group documents based on similarity of content represented by the words used. Once key groups are identified further drill down into sub-groupings is facilitated by the use of hierarchical clustering. Clustering and hierarchical clustering are very useful when applied to numerical and categorical data and cluster accuracy and purity measures exist to evaluate the outcomes of a clustering exercise. Although the same measures have been applied to text clustering, text clusters are based on words or terms which can be repeated across documents associated with different topics. Therefore text data cannot be considered as a direct ‘coding’ of a particular experience or situation in contrast to numerical and categorical data and term overlap is a very common characteristic in text clustering. In this paper we propose a new technique and methodology for term overlap capture from text documents, highlighting the different situations such overlap could signify and discuss why such understanding is important for obtaining value from text clustering. Experiments were conducted using a widely used text document collection where the proposed methodology allowed exploring the term diversity for a given document collection and obtain clusters with minimum term overlap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.