The electrochemical properties of chemically modified electrodes have long been a significant focus of research. Although the electronic states are directly related to the electrochemical properties, there have been only limited systematic efforts to reveal the electronic structures of adsorbed redox molecules with respect to the local environment of the redox center. In this study, density functional theory (DFT) calculations were performed for ferrocene-terminated self-assembled monolayers with different electron-donating abilities, which can be regarded as the simplest class of chemically modified electrodes. We revealed that the local electrostatic potentials, which are changed by the electron donating/withdrawing functional groups at the ferrocene moiety and the dipole field of coadsorbed inert molecules, practically determine the density of states derived from the highest occupied molecular orbital (HOMO) and its vicinities (HOMO-1 and HOMO-2) with respect to the electrode Fermi level. Therefore, to design new, sophisticated electrodes with chemical modification, one should consider not only the electronic properties of the constituent molecules, but also the local electrostatic potentials formed by these molecules and coadsorbed inert molecules.
Ferrocene-terminated self-assembled monolayers (SAMs) have been widely studied in the past quarter century to reveal the electrochemical properties of chemically modified electrodes. It has been well-known that the formal potential of the system strongly depends on the local environment of the ferrocene moiety. Although electronic states of ferroceneterminated SAMs should directly affect the electrochemical properties, knowledge concerning electronic structures with respect to different local environment is very limited. In this study, we performed density functional theory calculations of ferrocene-terminated SAMs with different coadsorbed species to reveal the relationship between the electronic structures and the local environment of ferrocene moieties. Depending on the local electrostatic potential, density of states derived from the highest-occupied molecular orbital (HOMO) and its vicinities (HOMO−1 and HOMO−2) of the ferrocene moiety were found to largely shift with respect to the electrode Fermi level up to 0.75 eV. This result leads to a novel strategy for designing sophisticated chemically modified electrodes where the electronic properties are electrostatically regulated by coadsorbed inert molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.