The antigenic activity of the N-terminal region of coat protein of turnip mosaic virus (TuMV) aphid transmissible strain 1 and non-transmissible strain 31 was examined by using a panel of monoclonal antibodies (MAbs) raised against the two virus strains as well as antisera raised against several synthetic peptides from the N-terminal region of the protein. The reactivity of these antibodies was tested in ELISA and in a biosensor system (BIAcore Pharmacia) using virus particles, dissociated coat protein and synthetic peptides as antigens. Substitution of a single amino acid at position 8 in the coat protein of TuMV strain 1 abolished any cross-reactivity between MAbs to strain 1 and the substituted peptide (strain 31) in ELISA although some cross-reactivity was apparent in BIAcore inhibition experiments. In reciprocal tests with MAbs to strain 31 no cross-reactivity with the heterologous peptide was detected in either type of assay. The amino acid residue present at position 8 appears to play a critical role in the binding capacity of MAbs specific for the N-terminal region of TuMV. Antiserum to a synthetic peptide corresponding to residues 1-14 of the protein of TuMV strain 1 was found to react strongly with dissociated coat protein and intact virus particles and was able to inhibit the aphid transmission of the virus. Antiserum to the corresponding peptide of strain 31 did not have this capacity.
Fourteen monoclonal antibodies (MAbs) were prepared against two strains of turnip mosaic virus (TuMV) differing in aphid transmissibility. Serological specificity of fourteen MAbs against the two strains was tested by indirect ELISA. Three MAbs were able to distinguish aphid transmissible TuMV strain 1 from non-aphid transmissible strain 31 while four MAbs reacted only with strain 31. No cross-reactivity between the two strains was found using these specific MAbs. Based upon the ability of Mab to inhibit the reaction of other MAbs, antibody competition test indicated that fourteen MAbs recognized six different epitopes on the virus particle; MAbs specific to strain 1 recognized two epitopes while MAbs specific to strain 31 also recognized two epitopes. The remaining two epitopes are common. Since the six amino acid differences between the coat proteins of the two strains were found at the N-terminal regions, MAbs specific to strain 1 or 31 bound to the different epitopes on the N-terminal regions in coat proteins of the two strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.