A wide variety of applications are used in lossless image compression models, especially in medical, space, and aerial imaging domains. Predictive coding improves the performance of lossless image compression, which highly relies on entropy error. Lower entropy error results in better image compression. The main focus of this research is to improve the prediction process by minimizing the entropy error. This paper proposes a novel idea for improved Median Edge Detection (iMED) predictor for lossless image compression. MED predictor is improved using k-means clustering and finding the local context of pixels using 20-Dimensional Difference (DDx20) for input images and updates the cluster weights using learning rates (µi) to minimize the prediction errors of pixels. The performance of the proposed predictor is evaluated on the standard grey-scale test images dataset and KODAK image dataset. Results are obtained and compared based on entropy error, bits per pixel (bpp), and computational running time in seconds(s) with the MED, GAP, FLIF, and LBP predictors. The performance of the proposed iMED predictor improves significantly in terms of the entropy error, bpp, and computational running time in seconds(s) after comparison with different state-of-the-art predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.