This work analyzes a database of 31 existing CO 2 enhanced oil recovery (EOR) projects that was compiled for the estimation of oil reserves to better understand the CO 2 retention, incremental oil recovery, and net CO 2 utilization for these oil fields. The measured data begin at the start date of the CO 2 flood and extend through the year 2007. Cumulative CO 2 retention (in the formation), incremental oil recovery factors, and net CO 2 utilization factors were calculated for each of the sites. To express all site data on a common dimensionless scale, the data were extrapolated to 300% cumulative hydrocarbon pore volume (HCPV) by fitting nonlinear functions. Summary statistics were then calculated from 0% to 300% HCPV. Across all 31 sites, the 10th, 50th (median), and 90th percentile values for the three factors at 300% HCPV were:
La0.7Sr0.3MnO3 (LSMO)-ZnO nanocomposites with varying concentrations of ZnO have been synthesized using the solution combustion method. A bimodal particle size distribution has been formed in all the samples. The crystallite size increases in the composites as compared to LSMO. The study on electrical resistivity reveals that LSMO exhibits a metal-to-insulator transition at 359 K, while the inclusion of ZnO suppresses the metallic behavior in the composites and increases the resistivity. Transport behavior of the samples in metallic and semiconducting regions has been explained with a known polynomial equation and a two-channel conduction model obeying the small polaron hopping mechanism, respectively. A very low activation energy in the range of 10–12 meV is observed due to smaller-sized particles. The presence of ZnO drives the hopping mechanism from adiabatic in LSMO to become non-adiabatic in the composites and enhances the maximum temperature coefficient of resistance. 80% LSMO-20% ZnO (by weight ratio) composite shows a maximum TCR of −29.81%/K at 248 K, which makes it a potential candidate for several applications in sensing devices. The Curie temperature of the material decreases with the increase in ZnO content in the sample. The results of this study also confirm the existence of correlation between the electrical and magnetic properties of LSMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.