Microplastics are small pieces of plastic that are less than 5 mm in size and can be found in most environments, including the oceans, rivers, and air. These small plastic particles can have negative impacts on wildlife and the environment. In this review of the literature, we analyze the presence of microplastics in various species of wildlife, including fish, birds, and mammals. We describe a variety of analytical techniques, such as microscopy and spectrometry, which identify and quantify the microplastics in the samples. In addition, techniques of sample preparation are discussed. Summary results show that microplastics are present in all the wildlife species studied, with the highest concentrations often found in fish and birds. The literature suggests that microplastics are widely distributed in the environment and have the potential to affect a wide range of species. Further research is required to fully understand the impacts of microplastics on wildlife and the environment.
Novel strategies for diagnostic screening of animal and herd health are crucial to contain disease outbreaks, maintain animal health, and maximize production efficiency. Mastitis is an inflammation of the mammary gland in dairy cows, often resulting from infection from a microorganism. Mastitis outbreaks result in loss of production, degradation of milk quality, and the need to isolate and treat affected animals. In this work, we evaluate MALDI-TOF mass spectrometry as a diagnostic for the culture-less screening of mastitis state from raw milk samples collected from regional dairies. Since sample preparation requires only minutes per sample using microvolumes of reagents and no cell culture, the technique is promising for rapid sample turnaround and low-cost diagnosis. Machine learning algorithms have been used to detect patterns embedded within MALDI-TOF spectra using a training set of 226 raw milk samples. A separate scoring set of 100 raw milk samples has been used to assess the specificity (spc) and sensitivity (sens) of the approach. Of machine learning models tested, the gradient-boosted tree model gave global optimal results, with the Youden index of J = 0.7, sens = 0.89, and spc = 0.81 achieved for the given set of conditions. Random forest models also performed well, achieving J > 0.63, with sens = 0.83 and spc = 0.81. Naïve Bayes, generalized linear, fast large-margin, and deep learning models failed to produce diagnostic results that were as favorable. We conclude that MALDI-TOF MS combined with machine learning is an alternative diagnostic tool for detection of high somatic cell count (SCC) and subclinical mastitis in dairy herds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.