Intermittent fasting (IF) is an increasingly popular dietary practice, and its implementation is found throughout human civilisation in various cultural, spiritual and religious traditions. Emerging evidence has shown that the health benefits of IF stretch beyond calorie restriction and weight loss. These benefits include metabolic shifts in energy production, the optimisation of peripheral circadian clocks, and overall improvement in physiological markers of metabolic health. IF has been proposed to reduce systemic inflammation and have a role in the prevention and treatment of chronic disease. For the athlete, IF protocols offer a potential new frontier for maintaining performance in the fasted state. They may allow athletes to optimise training adaptions, while respecting individual cultural, religious, and/or spiritual preferences to fast and exercise. Below, we discuss the physiological impact of fasted exercise while highlighting areas for future work to improve our understanding and implementation of the practice for the benefit of both the active general community and sporting populations.
Context: Cross-education (CE) refers to neuromuscular gains in the untrained limb upon contralateral limb training. To date, only laboratory-based exercise programs have demonstrated CE. Home-based exercise prescription eliciting CE could have greater clinical applicability. Objective: To determine the effect of an 8-week, home-based unilateral strength training intervention on isokinetic muscle strength, muscular excitation, and power in trained and untrained plantar flexors. Design: Randomized controlled trial. Methods: Thirty-four healthy participants were randomized to intervention (n = 20) or control (n = 14). The intervention group completed 3 sets of 12 repetitions of progressively loaded unilateral calf raises 3 days per week. Concentric and eccentric peak torque were measured using isokinetic dynamometry at 30°/s and 120°/s. Maximal electromyogram amplitude was simultaneously measured. Power was measured using a jump mat. All variables were measured at preintervention, midintervention, and postintervention. Results: Strength significantly increased bilaterally pre–post at both velocities concentrically and eccentrically in intervention group participants. Maximal electromyogram amplitude significantly increased pre–post bilaterally at both velocities in the medial gastrocnemii of the intervention group. Power significantly increased bilaterally pre–post in the intervention group, with a dose–response effect demonstrated in the untrained plantar flexors. The CE effects of strength, power, and electromyogram activation were 23.4%, 14.6%, and 25.3%, respectively. All control group values were unchanged pre–post. Conclusion: This study shows that a simple at-home unilateral plantar flexor exercise protocol induces significant increases in contralateral strength, muscular excitation, and power. These results suggest the applicability of CE in home rehabilitation programs aiming to restore or maintain neuromuscular function in inactive individuals or immobilized ankles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.