This paper aims to extract an ObjectProperty-UsageMethod relation, in particular the HerbalMedicinalPropertyUsageMethod relation of the herb-plant object, as a semantic relation between two related sets, a herbalmedicinal-property concept set and a usage-method concept set from several web documents. This HerbalMedicinalProperty-UsageMethod relation benefits people by providing an alternative treatment/solution knowledge to health problems. The research includes three main problems: how to determine EDU (where EDU is an elementary discourse unit or a simple sentence/clause) with a medicinal-property/usage-method concept; how to determine the usage-method boundary; and how to determine the HerbalMedicinalPropertyUsageMethod relation between the two related sets. We propose using N-Word-Co on the verb phrase with the medicinal-property/usage-method concept to solve the first and second problems where the N-Word-Co size is determined by the learning of maximum entropy, support vector machine, and naïve Bayes. We also apply naïve Bayes to solve the third problem of determining the HerbalMedicinalProperty-UsageMethod relation with N-Word-Co elements as features. The research results can provide high precision in the HerbalMedicinalProperty-UsageMethod relation extraction.
<p>This research aims to determine an event-concept pair series as consequent events, particularly a Cause-Effect-concept pair (called ‘CEpair’) series on disease documents downloaded from hospital-web-boards. CEpair series are used for representing medical/disease complications which benefit for Solving system. Each causative/effect event concept is expressed by a verb phrase of an elementary discourse unit (EDU) which is a simple sentence. The research has three problems; how to determine each adjacent-EDU pair having the cause-effect relation, how to determine a CEpair series mingled with non-causeeffect-relation EDUs, and how to identify the complication of several extracted CEpair series from the documents. Therefore, we extract NWordCo-concept set having the causative/effect concepts from EDUs’ verb phrases including a support vector machine to solve each NWordCo size. We apply the Naïve Bayes classifier to learn and extract an NWordCoconcept pair set as a knowledge template having the cause-effect relation from the documents. We then propose using the knowledge template to extract several CEpair series. We also apply the intersection of the NWordCo-concept sets to identify the commoncause/effect for representing the complication-development parts of the extracted-CEpair series. The research results provide the high percent correctness of the CEpair-series determination from the documents.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.