Summary The rheological behavior of microemulsion systems was systematically investigated with mixtures of oil, brine, surfactant, cosolvent, and in some cases polymer to determine their effects. A microemulsion-rheology model was developed and used to interpret the experimental results. The optimal microemulsion/oil-viscosity ratio without cosolvent was roughly 5:6, but it can be reduced to a more favorable ratio of approximately 2 by adding cosolvent. Even though the amount of cosolvent needed is case dependent, a clear trend of microemulsion-viscosity reduction with increasing cosolvent concentration was observed. Limited evidence suggests that large hydrolyzed polyacrylamide (HPAM) molecules with a narrow molecular-weight (MW) distribution have negligible partitioning to Type II and Type III microemulsions.
We made measurements of microemulsion rheology with mixtures of oil, brine, surfactant, co-solvent, and in some cases polymer to systematically investigate the effects of salinity, co-solvents and polymers. A microemulsion rheology model was developed and used to interpret the experimental results. We show that the optimum microemulsion-to-oil viscosity ratio is roughly 5 to 6 without co-solvent, but it can be reduced to a more favorable ratio of ~2 by adding co-solvent. Even though the amount of co-solvent needed is case dependent, a clear trend of microemulsion viscosity reduction with increasing co-solvent concentration was observed. Limited evidence suggests that large hydrolyzed polyacrylamide molecules with a narrow molecular weight distribution have negligible partitioning to type II and III microemulsions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.