edge devices. The new breed of intelligent devices and high-stake applications (drones, augmented/virtual reality, autonomous systems, and so on) requires a novel paradigm change calling for distributed, low-latency and reliable ML at the wireless network edge (referred to as edge ML). In edge ML, training data are unevenly distributed over a large number of edge nodes, which have access to a tiny fraction of the data. Moreover, training and inference are carried out collectively over wireless links, where edge devices communicate and exchange their learned models (not their private data). In a first of its kind, this article explores the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines. Finally, several case studies pertaining to various high-stake applications are presented to demonstrate the effectiveness of edge ML in unlocking the full potential of 5G and beyond.
In this paper, the problem of joint power and resource allocation for ultra reliable low latency communication (URLLC) in vehicular networks is studied. The key goal is to minimize the networkwide power consumption of vehicular users (VUEs) subject to high reliability in terms of probabilistic queuing delays. In particular, using extreme value theory (EVT), a new reliability measure is defined to characterize extreme events pertaining to vehicles' queue lengths exceeding a predefined threshold with non-negligible probability. In order to learn these extreme events in a dynamic vehicular network, a novel distributed approach based on federated learning (FL) is proposed to estimate the tail distribution of the queues. Taking into account the communication delays incurred by FL over wireless links, Lyapunov optimization is used to derive the joint transmit power and resource allocation policies enabling URLLC for each VUE in a distributed manner. The proposed solution is then validated via extensive simulations using a Manhattan mobility model. Simulation results show that FL enables the proposed distributed method to estimate the tail distribution of queues with an accuracy that is very close to a centralized solution with up to 79% reductions in the amount of data that need to be exchanged. Furthermore, the proposed method yields up to 60% reductions of VUEs with large queue lengths, while reducing the average power consumption by two folds, compared to an average queue-based baseline. For the VUEs with large queue lengths, the proposed method reduces their average queue lengths and fluctuations therein by about 30% compared to the aforementioned baseline. arXiv:1807.08127v2 [cs.IT] 1 Aug 2018 Index Terms V2V communication, Lyapunov optimization, extreme value theory, federated learning, URLLC, 5G. I. INTRODUCTION Providing efficient vehicle-to-vehicle (V2V) communications is a necessary stepping stone for enabling autonomous and intelligent transportation systems (ITS) [1]-[5]. V2V communications can extend drivers' field of view, thus enhancing traffic safety and driving experience, while enabling new transportation features such as platooning, real-time navigation, collision avoidance, and autonomous driving [1], [4]. However, the performance of emerging transportation applications heavily rely on the availability of V2V communication links with extremely low errors and delays. In this regard, achieving ultra-reliable low-latency communication (URLLC) for V2V networks is necessary for realizing the vision of intelligent transportation [1]. Since over-the-air latency and queuing latency are coupled, ensuring low queuing latency is required to achieve the much coveted target end-to-end latency of 1 ms. This, in turn, necessitates efficient radio resource management (RRM) techniques [5]-[7]. Furthermore, the increased energy consumption and its negative impact on the environment due to the large number of vehicles in modern transportation system, and improving energy-efficiency/energy savings need to be addressed ...
In this paper, a novel joint transmit power and resource allocation approach for enabling ultra-reliable low-latency communication (URLLC) in vehicular networks is proposed. The objective is to minimize the network-wide power consumption of vehicular users (VUEs) while ensuring high reliability in terms of probabilistic queuing delays. In particular, a reliability measure is defined to characterize extreme events (i.e., when vehicles' queue lengths exceed a predefined threshold with non-negligible probability) using extreme value theory (EVT). Leveraging principles from federated learning (FL), the distribution of these extreme events corresponding to the tail distribution of queues is estimated by VUEs in a decentralized manner. Finally, Lyapunov optimization is used to find the joint transmit power and resource allocation policies for each VUE in a distributed manner. The proposed solution is validated via extensive simulations using a Manhattan mobility model. It is shown that FL enables the proposed distributed method to estimate the tail distribution of queues with an accuracy that is very close to a centralized solution with up to 79% reductions in the amount of data that need to be exchanged. Furthermore, the proposed method yields up to 60% reductions of VUEs with large queue lengths, without an additional power consumption, compared to an average queue-based baseline. Compared to systems with fixed power consumption and focusing on queue stability while minimizing average power consumption, the reduction in extreme events of the proposed method is about two orders of magnitude.
We study the problem of joint load balancing (user association and user scheduling) and interference management (beamforming design and power allocation) in heterogeneous networks (HetNets) in which massive multiple-input multipleoutput (MIMO) macro cell base station (BS) equipped with a large number of antennas, overlaid with wireless self-backhauled small cells (SCs) are assumed. Self-backhauled SC BSs with fullduplex communication employing regular antenna arrays serve both macro users and SC users by using the wireless backhaul from macro BS in the same frequency band. We formulate the joint load balancing and interference mitigation problem as a network utility maximization subject to wireless backhaul constraints. Subsequently, leveraging the framework of stochastic optimization, the problem is decoupled into dynamic scheduling of macro cell users, backhaul provisioning of SCs, and offloading macro cell users to SCs as a function of interference and backhaul links. Via numerical results, we show the performance gains of our proposed framework under the impact of SCs density, number of BS antennas, and transmit power levels at low and high frequency bands. It is shown that our proposed approach achieves a 5.6× gain in terms of cell-edge performance as compared to the closed-access baseline in ultra-dense networks with 350 SC BSs per km 2 .
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond. By imbuing intelligence into the network edge, edge nodes can proactively carry out decision-making, and thereby react to local environmental changes and disturbances while experiencing zero communication latency. To achieve this goal, it is essential to cater for high ML inference accuracy at scale under time-varying channel and network dynamics, by continuously exchanging fresh data and ML model updates in a distributed way. Taming this new kind of data traffic boils down to improving the communication efficiency of distributed learning by optimizing communication payload types, transmission techniques, and scheduling, as well as ML architectures, algorithms, and data processing methods. To this end, this article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases. SIGNIFICANCE AND MOTIVATIONThe pursuit of extremely stringent latency and reliability guarantees is essential in the fifth generation (5G) communication system and beyond [1], [2]. In a wirelessly automated factory, the remote control of assembly robots should provision the same level of target latency and reliability offered by existing wired factory systems. To this end, for instance, control packets should be delivered within 1 ms with 99.99999% reliability [3]- [5]. Things are becoming even more challenging in the emerging mission-critical applications beyond 5G. A prime example is the forthcoming nonterrestrial networks consisting of a massive constellation of low-altitude earth orbit (LEO) satellites [6]- [11]. Given such
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.