Schizandrin is recognized as the major absorbed effective constituent of Fructus schisandrae, which is extensively applied in Chinese medicinal formula. The present study aimed to profile the phase I metabolites of schizandrin and identify the cytochrome P450 (CYP) isoforms involved. After schizandrin was incubated with human liver microsomes, three metabolites were isolated by high-performance liquid chromatography (HPLC) and their structures were identified to be 8(R)-hydroxyl-schizandrin, 2-demethyl-8(R)-hydroxyl-schizandrin, 3-demethyl-8(R)-hydroxyl-schizandrin, by liquid chromatography-mass spectrometry (LC-MS), (1)H-nuclear magnetic resonance (NMR), and (13)C-NMR, respectively. A combination of correlation analysis, chemical inhibition studies, assays with recombinant CYPs, and enzyme kinetics indicated that CYP3A4 was the main hepatic isoform that cleared schizandrin. Rat and minipig liver microsomes were included when evaluating species differences, and the results showed little difference among the species. In conclusion, CYP3A4 plays a major role in the biotransformation of schizandrin in human liver microsomes. Minipig and rat could be surrogate models for man in schizandrin pharmacokinetic studies. Better knowledge of schizandrin's metabolic pathway could provide the vital information for understanding the pharmacokinetic behaviours of schizandrin contained in Chinese medicinal formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.