Autonomous oscillations found in gene expression and metabolic, cardiac and neuronal systems have attracted significant attention both because of their obvious biological roles and their intriguing dynamics. In addition, de novo designed oscillators have been demonstrated, using components that are not part of the natural oscillators. Such oscillators are useful in testing the design principles and in exploring potential applications not limited by natural cellular behaviour. To achieve transcriptional and metabolic integration characteristic of natural oscillators, here we designed and constructed a synthetic circuit in Escherichia coli K12, using glycolytic flux to generate oscillation through the signalling metabolite acetyl phosphate. If two metabolite pools are interconverted by two enzymes that are placed under the transcriptional control of acetyl phosphate, the system oscillates when the glycolytic rate exceeds a critical value. We used bifurcation analysis to identify the boundaries of oscillation, and verified these experimentally. This work demonstrates the possibility of using metabolic flux as a control factor in system-wide oscillation, as well as the predictability of a de novo gene-metabolic circuit designed using nonlinear dynamic analysis.
Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.
Artificial transcriptional networks have been used to achieve novel, nonnative behavior in bacteria. Typically, these artificial circuits are isolated from cellular metabolism and are designed to function without intercellular communication. To attain concerted biological behavior in a population, synchronization through intercellular communication is highly desirable. Here we demonstrate the design and construction of a gene-metabolic circuit that uses a common metabolite to achieve tunable artificial cell-cell communication. This circuit uses a threshold concentration of acetate to induce gene expression by acetate kinase and part of the nitrogen-regulation two-component system. As one application of the cell-cell communication circuit we created an artificial quorum sensor. Engineering of carbon metabolism in Escherichia coli made acetate secretion proportional to cell density and independent of oxygen availability. In these cells the circuit induced gene expression in response to a threshold cell density. This threshold can be tuned effectively by controlling ⌬pH over the cell membrane, which determines the partition of acetate between medium and cells. Mutagenesis of the enhancer sequence of the glnAp 2 promoter produced variants of the circuit with changed sensitivity demonstrating tunability of the circuit by engineering of its components. The behavior of the circuit shows remarkable predictability based on a mathematical design model.
An enzymatic production method for dTDP-4-keto-6-deoxy-D-glucose, a key intermediate of various deoxysugars in antibiotics, was developed starting from dTMP, acetyl phosphate, and glucose-1-phosphate. Four enzymes, i.e., TMP kinase, acetate kinase, dTDP-glucose synthase, and dTDP-D-glucose 4,6-dehydratase' were overexpressed using T7 promoter system in the E. coli BL21 strain, and the dTDP-4-keto-6-deoxy-D-glucose was synthesized by using the enzyme extracts in one-pot batch system. When 20 mM dTMP of initial concentration was used, Mg2+ ion, acetyl phosphate, and glucose-1-phosphate concentrations were optimized. About 95% conversion yield of dTDP-4-keto-6-deoxy-D-glucose was obtained based on initial dTMP concentration at 20 mM dTMP, 1 mM ATP, 60 mM acetyl phosphate, 80 mM glucose-1-phosphate, and 20 mM MgCl(2). The rate-limiting step in this multiple enzyme reaction system was the dTDP-glucose synthase reaction. Using the reaction scheme, about 1 gram of purified dTDP-4-keto-6-deoxy-D-glucose was obtained in an overall yield of 81% after two-step purification, i.e., anion exchange chromatography and gel filtration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.