Collisions of electrocatalytic platinum (Pt) single nanoparticles (NPs) with a less electrocatalytic nickel (Ni) ultramicroelectrode (UME) surface were detected by amplification of the current by electrocatalysis of NPs. Two typical types of current responses, a current staircase or blip (or spike), in single NP collision experiments were observed at a time with a new system consisting of Pt NP/Ni UME/hydrazine oxidation. The staircase current response was obtained when the collided NPs were attached to the electrode and continued to produce electrocatalytic current. On the other hand, the blip current response was believed to be obtained when the NP attached but was deactivated. The different current responses depend on the different electrocatalytic reaction mechanism, characteristics of the NP, or the electrode material. How the deactivation of the electrocatalytic process affects on the current response of NP collision was investigated using the Ni UME. The current response of a single Pt NP collision is controllable from staircase to blip by changing the applied potential. The current response of the Pt NP was observed as a staircase response with 0 V (vs Ag/AgCl) and as a blip response with 0.1 V (vs Ag/AgCl) applied to the Ni UME.
The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (µ i and P cv ) of the powder cores were obtained from the Ca and Al containing alloys after annealing at 530 °C for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.