The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable new approaches to biological and medical challenges. Here we describe a novel motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1,000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of complexes containing designed and evolved proteins reveal binding is entirely through the designed interface, making use of specific designed interactions. Surprisingly, in the evolved complex one of the partners is rotated 180 degrees relative to the design model. This work demonstrates that current understanding of protein-protein interfaces is sufficient to rationally design interfaces de novo, and underscores remaining challenges.
CLN5 is a soluble lysosomal protein with unknown function. Mutations in CLN5 lead to neuronal ceroid lipofuscinosis, a group of inherited neurodegenerative disorders that mainly affect children. CLN5 has eight potential N-glycosylation sites based on the Asn-X-Thr/Ser consensus sequence. Through site-directed mutagenesis of individual asparagine residues to glutamine on each of the N-glycosylation consensus sites, we showed that all eight putative N-glycosylation sites are utilized in vivo. Additionally, localization studies showed that the lack of N-glycosylation on certain sites (N179, N252, N304, or N320) caused CLN5 retention in the endoplasmic reticulum, indicating that glycosylation is important for protein folding. Interestingly, one particular mutant, N401Q, is mislocalized to the Golgi, suggesting that N401 is not important for protein folding but essential for CLN5 trafficking to the lysosome. Finally, we analyzed several patient mutations in which N-glycosylation is affected. The N192S patient mutant is localized to the lysosome, indicating that this mutant has a functional defect in the lysosome. Our results suggest that there are functional differences in various N-glycosylation sites of CLN5 which affect folding, trafficking, and lysosomal function of CLN5.
Recapitulation of developmental signals represents a promising strategy for treating intervertebral disc degeneration. During development, embryonic notochord-derived cells (NDCs) are the direct progenitors of cells that populate the adult nucleus pulposus (NP) and are an important source of secreted signaling molecules. The objective of this study was to define global gene expression profiles of NDCs at key stages of embryonic disc formation. NDCs were isolated from Shh-cre;ROSA:YFP mice at embryonic day 12.5 and postnatal day 0, representing opposite ends of the notochord to NP transformation. Differences in global mRNA abundance across this developmental window were established using RNA-Seq. Protein expression of selected molecules was confirmed using immunohistochemistry. Principal component analysis revealed clustering of gene expression at each developmental stage with more than 5000 genes significantly differentially expressed between E12.5 and P0. There was significantly lower mRNA abundance of sonic hedgehog pathway elements at P0 vs E12.5, while abundance of elements of the transforming growth factor-beta and insulin-like growth factors pathways, and extracellular matrix components including collagen 6 and aggrecan, were significantly higher at P0. This study represents the first transcriptome-wide analysis of embryonic NDCs. Results suggest signaling and biosynthesis of NDCs change dramatically as a function of developmental stage.
Summary Laboratory-created small-molecule-dependent inteins enable protein structure and function to be controlled post-translationally in living cells. Previously we evolved two inteins (2-4 and 3-2) that splice efficiently in the presence, but not the absence, of the cell-permeable small molecule 4-hydroxytamoxifen (4-HT) in a variety of extein contexts in Saccharomyces cerevisiae. In mammalian cells, however, the 2-4 and 3-2 inteins exhibited significantly lower splicing efficiencies and slower splicing in the presence of 4-HT, as well as higher background splicing in the absence of 4-HT, than in yeast cells. In this work we evolved the 2-4 and 3-2 inteins through several additional rounds of mutation, recombination, and screening in S. cerevisiae at both 30 °C and 37 °C. The resulting second-generation evolved inteins exhibit substantially improved (~2- to 5-fold higher) splicing yields in yeast compared to the parental 2-4 and 3-2 inteins and significantly faster splicing kinetics. The improved properties of these evolved inteins carried over to mammalian cells, in which the newly evolved inteins spliced with substantially greater (~2- to 8-fold) efficiency in the presence of 4-HT while maintaining background splicing levels in the absence of 4-HT that are comparable to or better than the levels observed with the 2-4 or 3-2 inteins. In total, these inteins were tested in four different protein contexts in yeast and human cells and found to exhibit their substantially improved properties in all contexts tested, typically resulting in 50–90% spliced protein in the presence of 4-HT and < 5% splicing in the absence of 4-HT. The second-generation evolved inteins augment the promise of ligand-dependent protein splicing as an effective and broadly applicable approach to probing protein function in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.