The amyloid-β protein (Aβ) protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). It is believed that Aβ deposited in the brain originates from the brain tissue itself. However, Aβ is generated in both brain and peripheral tissues. Whether circulating Aβ contributes to brain AD-type pathologies remains largely unknown. In this study, using a model of parabiosis between APPswe/PS1dE9 transgenic AD mice and their wild-type littermates, we observed that the human Aβ originated from transgenic AD model mice entered the circulation and accumulated in the brains of wild-type mice, and formed cerebral amyloid angiopathy and Aβ plaques after a 12-month period of parabiosis. AD-type pathologies related to the Aβ accumulation including tau hyperphosphorylation, neurodegeneration, neuroinflammation and microhemorrhage were found in the brains of the parabiotic wild-type mice. More importantly, hippocampal CA1 long-term potentiation was markedly impaired in parabiotic wild-type mice. To the best of our knowledge, our study is the first to reveal that blood-derived Aβ can enter the brain, form the Aβ-related pathologies and induce functional deficits of neurons. Our study provides novel insight into AD pathogenesis and provides evidence that supports the development of therapies for AD by targeting Aβ metabolism in both the brain and the periphery.
Although ketamine shows a rapid and sustained antidepressant effect, the precise mechanisms underlying its effect are unknown. Recent studies indicate a key role of p11 (also known as S100A10) in depression-like behavior in rodents. The present study aimed to investigate the role of p11 in the antidepressant-like action of ketamine in chronic unpredictable mild stress (CUMS) rat model. The open-field test, forced swimming test and sucrose preference test were performed after administration of ketamine (10 mg kg−1) or a combination of ketamine and ANA-12 (a tropomyosin-related kinase B (TrkB) antagonist; 0.5 mg kg−1). The lentivirus vector for p11 was constructed to knock down the hippocampal expression of p11. In the CUMS rats, ketamine showed a rapid (0.5 h) and sustained (72 h) antidepressant effect, and its effect was significantly blocked by co-administration of ANA-12. Furthermore, ketamine significantly increased the reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of CUMS rats, whereas ketamine did not affect the expression of p11 in CUMS rats 0.5 h after administration. In addition, ketamine significantly increased the reduced ratio of p-TrkB/TrkB in the hippocampus by CUMS rats, and its effect was also blocked by ANA-12. Moreover, the reduced expression of BDNF and p11 in the hippocampus of CUMS rats was significantly recovered to control levels 72 h after ketamine administration. Interestingly, knockdown of hippocampal p11 caused increased immobility time and decreased sucrose preference, which were not improved by ketamine administration. These results suggest that p11 in the hippocampus may have a key role in the sustained antidepressant effect of ketamine in the CUMS model of depression.
Increased tubular apoptosis in experimental diabetic rats is attenuated by blockade of the renin-angiotensin system with an ACE inhibitor, which might be in an association with reduced endoplasmic reticulum stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.