The development of country-specific emission factors in relation to the Agriculture, Forestry, and Other Land Use (AFOLU) sector has the potential to improve national greenhouse gas inventory systems. Forests are carbon sinks in the AFOLU that can play an important role in mitigating global climate change. According to the United Nations Framework Convention on Climate Change (UNFCCC), signatory countries must report forest carbon stocks, and the changes within them, using emission factors from the Intergovernmental Panel on Climate Change (IPCC) or from country-specific values. This study was conducted to estimate forests carbon stocks and to complement and improve the accuracy of national greenhouse gas inventory reporting in South Korea. We developed country-specific emissions factors and estimated carbon stocks and their changes using the different approaches and methods described by the IPCC (IPCCEF: IPCC default emission factors, CSFT: country-specific emission factors by forest type, and CSSP: country-specific emission factors by species). CSFT returned a result for carbon stocks that was 1.2 times higher than the value using IPCCEF. Using CSSP, CO2 removal was estimated to be 60,648 Gg CO2 per year with an uncertainty of 22%. Despite a reduction in total forest area, forests continued to store carbon and absorb CO2, owing to differences in the carbon storage capacities of different forest types and tree species. The results of this study will aid estimations of carbon stock changes and CO2 removal by forest type or species, and help to improve the completeness and accuracy of the national greenhouse gas inventory. Furthermore, our results provide important information for developing countries implementing Tier 2, the level national greenhouse gas inventory systems recommended by the IPCC.
The objective of this study was to establish an open-field experimental warming treatment and precipitation manipulation system to simulate climate change impact for Pinus densiflora seedlings based on a climate change scenario in Korea. Two-year-old seedlings were planted in a nursery in April, 2013. The air temperature of warmed plots (W) was set to increase by 3.0 o C compared to control plots (C) using infrared lamps from May, 2013. The three precipitation manipulation consisted of precipitation decrease using transparent panel (-30%; P − ), precipitation increase using pump and drip-irrigation (+30%; P + ) and precipitation control (0%; P 0 ). Initially, the air temperature was 2.2 o C higher in warmed plots than in control plots and later air temperature was maintained close to the target temperature of 3.0 o C. The average soil temperature was 3.1 o C higher in warmed plots than in control plots. Also the average soil moisture content after the precipitation manipulation increased by 13.9% in P
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.