Organic light-emitting diode (OLED) displays are highly susceptible to the harsh environmental conditions found outdoors, like exposure to direct sunlight as well as UV radiation and storage temperature, resulting in a loss of luminance and lifespan, pixel shrinkage, and permanent damage and/or malfunction of the panel.Here, we fabricated top emission OLEDs (TEOLEDs) using Yb : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) andMg : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) cathode units and the performances of the devices were investigated by subjecting them to UV radiation. A fabricated red TEOLED (control device), employing a standard Mg : LiF (1 : 1, 2 nm) electron injection layer (EIL) and an Ag : Mg (16 nm) cathode, showed a rapid decrease in luminance and a fast increase in driving voltage at 10 mA cm À2 over time after UV irradiation for 300 h. However, a cathode unit comprising a Yb : LiF (1 : 1, 2 nm) EIL and an Ag : Mg (10 : 1, 16 nm) cathode showed no loss of luminance or increase in driving voltage at 10 mA cm À2 over time after UV irradiation for 300 h. Therefore, we investigated the changes occurring in both cathode units due to UV irradiation using the lift-out FIB-TEM technique and EDS mapping. With UV irradiation for 300 h, Ag atoms migrated toward the center of the cathode, Mg atoms migrated toward the CPL, and no Mg atoms were observed in the EIL area. In contrast, we observed (i) no substantial migration of Ag atoms and they were located at the center of the cathode, (ii) no migration of Mg atoms toward the CPL layer, and (iii) no movement of Yb atoms after UV irradiation. Furthermore, the UV irradiated red TEOLED with an Mg : LiF (1 : 1, 2 nm) EIL showed (i) deterioration in electron injection into the emissive layer (EML) and an increase in the EIL/metal interface resistance, and (ii) a remarkable shift of the J-V curve to the higher voltage side, while almost no such changes were observed in the TEOLD with a Yb : LiF (1 : 1, 2 nm) EIL. Also, an almost identical RGB pixel emitting area was noticed in the Yb : LiF (1 : 1, 2 nm) based devices after UV irradiation for 300 h. These results suggest that Yb could become a good candidate for the cathode unit, providing better device stability against harsh environmental conditions as well as excellent electron injection properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.