BackgroundPanax ginseng has distinct and impressive health benefits, such as improved blood pressure and immune system functioning. Rg3-enriched Korean Red Ginseng (REKRG) isolated from Korean Red Ginseng contains a high percentage of Rg3.MethodsIn this study, we examined the effects of REKRG on endothelial cell nitric oxide synthase (eNOS) activation and adhesion molecules in endothelial cells and vascular function in rats.ResultsREKRG dose-dependently increased eNOS phosphorylation and nitric oxide (NO) production in endothelial cells. In addition, REKRG markedly inhibited the tumor necrosis factor-α (TNF-α)-mediated induction of intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expressions in endothelial cells. REKRG improved endothelium-dependent vasorelaxation in the Wistar-Kyoto (WKY) rat and spontaneously hypertensive rats (SHRs) compared with controls. Furthermore, REKRG treatment for 6 weeks increased serum NO levels and reduced the mean aortic intima-media thickness compared with controls.ConclusionTaken together, these results suggest that REKRG increased vascular function and improved immune system functioning. Therefore, REKRG is a very useful food for preventing or improving various cardiovascular diseases.
Mitochondrial dysfunction has been implicated in the pathophysiology of various cardiovascular diseases. CRIF1 is a protein present in the mitochondria associated with large mitoribosomal subunits, and CRIF1 knockdown induces mitochondrial dysfunction and promotes ROS production. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals and, therefore, is a key factor for oxidative stress in endothelial cells. In this study, we investigated whether mitochondrial dysfunction induced by CRIF1 knockdown induces p66shc stimulation and plays any role in mitochondrial dysfunction-induced endothelial activation. Knockdown of CRIF1 decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III and IV, leading to increased mitochondrial ROS (mtROS) and hyperpolarization of the mitochondrial membrane potential. Knockdown of CRIF1 also stimulated phosphorylation of p66shc and increased cytosolic ROS in endothelial cells. Furthermore, the expression of vascular cell adhesion molecule-1 and endoplasmic reticulum stress proteins were increased upon CRIF1 knockdown in endothelial cells. However, p66shc knockdown blunted the alteration in mitochondrial dynamics and ROS production in CRIF1 knockdown endothelial cells. In addition, p66shc knockdown reduced the CRIF1 knockdown-induced increases in adhesion between monocytes and endothelial cells. Taken together, these results suggest that CRIF1 knockdown partially induces endothelial activation via increased ROS production and phosphorylation of p66shc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.