Warm season (June-September) hydroclimatology is a key determinant of freshwater supplies in the Korean Peninsula. In the Han River Basin, nearly three-fourths of annual discharge occurs during the warm season. Given the increased reliance on water supplies for numerous human and ecosystem functions, an integrated view of water supplies within the context of the regional hydroclimate will aid efforts to achieve water resources sustainability. To that end, this diagnostic study investigates several key aspects of the Han River hydrologic regime: (i) the warm season hydroclimatology; (ii) understanding the relative contribution of typhoon and non-typhoon precipitation events to warm season streamflow; and (iii) relationships with large-scale atmospheric teleconnections patterns and the implied seasonal predictability. Statistical analysis of modelled unimpaired streamflow indicates that the East Atlantic-Western Russia (EA-WR) teleconnection pattern modulates the Han River streamflow during the warm season. Furthermore, a linear modelling approach using the EA-WR and East Atlantic (EA) teleconnection indices offers a useful empirical framework for understanding the systematic shifts in streamflow probability distributions. Based on these results, potential use of this information for multiobjective water resources management, environmental flow prescriptions, proactive use of seasonal forecasts, and some open questions are briefly discussed.
Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) version 6 (TMPAv6) and version 7 (TMPAv7), the global satellite mapping of precipitation (GSMaP), and the climate prediction center (CPC) morphing technique (CMORPH)) were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra-and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative) biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM) mission.
Sustainable management of small island freshwater resources requires an understanding of the extent of freshwater lens and local effects of pumping. In this study, a methodology based on a sharp interface approach is developed for regional and well scale modeling of island freshwater lens. A quasi-three-dimensional finite element model is calibrated with freshwater thickness where the interface is matched to the lower limit of the freshwater lens. Tongatapu Island serves as a case study where saltwater intrusion and well salinization for the current state and six long-term stress scenarios of reduced recharge and increased groundwater pumping are predicted. Though no wells are salinized currently, more than 50% of public wells are salinized for 40% decreased recharge or increased groundwater pumping at 8% of average annual recharge. Risk of salinization for each well depends on the distance from the center of the well field and distance from the lagoon. Saltwater intrusions could occur at less than 50% of the previous estimates of sustainable groundwater pumping where local pumping was not considered. This study demonstrates the application of a sharp interface groundwater model for real-world small islands when dispersion models are challenging to be implemented due to insufficient data or computational resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.