The Community Multiscale Air Quality (CMAQ) model is widely used in air quality management and scientific investigation. Numerous studies have been conducted investigating how well CMAQ simulates fine particle mass concentrations, but relatively few studies have addressed how well CMAQ simulates fine particle number distribution. Accurate simulation of particle number concentrations is important because particle number and surface area concentrations may be directly related to human health and visibility. Simulated fine particle number concentrations derived using CMAQ are compared to measurements to identify problems and to improve model performance. Evaluation is done using measured particle number concentrations in Atlanta, Georgia, from 1/1/1999 to 8/31/2000. While homogeneous binary nucleation mechanism used in CMAQ needs to be modified for better prediction of particle number concentrations, there are also other factors that affect the predicted particle level. Assumed particle size of the primary emissions in CMAQ causes number concentrations to be significantly underestimated, while particle density has a small impact. Assuming particle size distributions by three lognormal modes cannot accurately simulate particles with size less than 0.01 µm, particularly during nucleation events. An additional mode that accounts for particles smaller than 0.01 µm can improve the accuracy of the number concentration simulations. Though, the use of the Expectation-Maximization (EM) algorithm to estimate size distribution parameters of measured particles suggests that assumed parameters for the lognormal modes in CMAQ are generally reasonable.
Statistical analyses of time-series or spatial data have been widely used to investigate the behavior of ambient air pollutants. Because air pollution data are generally collected in a wide area of interest over a relatively long period, such analyses should take into account both spatial and temporal characteristics. The objective of this study is 2-fold: (1) to identify an efficient way to characterize the spatial variations of fine particulate matter (PM2.5) concentrations based solely upon their temporal patterns, and (2) to analyze the temporal and seasonal patterns of PM2.5 concentrations in spatially homogenous regions. This study used 24-hr average PM2.5 concentrations measured every third day during a period between 2001 and 2005 at 522 monitoring sites in the continental United States. A k-means clustering algorithm using the correlation distance was used to investigate the similarity in patterns between temporal profiles observed at the monitoring sites. A k-means clustering analysis produced six clusters of sites with distinct temporal patterns that were able to identify and characterize spatially homogeneous regions of the United States. The study also presents a rotated principal component analysis (RPCA) that has been used for characterizing spatial patterns of air pollution and discusses the difference between the clustering algorithm and RPCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.