Establishing the relationship among the composition, structure and property of the associated materials at the molecular level is of great significance to the rational design of high-performance electrical insulating Epoxy Resin (EP) and its composites. In this paper, the molecular models of pure Diglycidyl Ether of Bisphenol A resin/Methyltetrahydrophthalic Anhydride (DGEBA/MTHPA) and their nanocomposites containing nano-SiO 2 with different particle sizes were constructed. The effects of nano-SiO 2 dopants and the crosslinked structure on the micro-structure and thermomechanical properties were investigated using molecular dynamics simulations. The results show that the increase of crosslinking density enhances the thermal and mechanical properties of pure EP and EP nanocomposites. In addition, doping nano-SiO 2 particles into EP can effectively improve the properties, as well, and the effectiveness is closely related to the particle size of nano-SiO 2 . Moreover, the results indicate that the glass transition temperature (T g ) value increases with the decreasing particle size. Compared with pure EP, the T g value of the 6.5 Å composite model increases by 6.68%. On the contrary, the variation of the Coefficient of Thermal Expansion (CTE) in the glassy state demonstrates the opposite trend compared with T g . The CTE of the 10 Å composite model is the lowest, which is 7.70% less than that of pure EP. The mechanical properties first increase and then decrease with the decreasing particle size. Both the Young's modulus and shear modulus reach the maximum value at 7.6 Å, with noticeable increases by 12.60% and 8.72%, respectively compared to the pure EP. In addition, the thermal and mechanical properties are closely related to the Fraction of Free Volume (FFV) and Mean Squared Displacement (MSD). The crosslinking process and the nano-SiO 2 doping reduce the FFV and MSD value in the model, resulting in better thermal and mechanical properties.
Investigating the relationship between microstructure and macroscopic properties of epoxy resin (EP) materials for high-voltage insulation at the molecular level can provide theoretical guidance for the synthetic design of EP. Here, using diglycidyl ether (DGEBA) as the resin matrix and methyl tetrahydrophthalic anhydride (MTHPA) as the curing agent, a set of crosslinked EP molecular models at different curing stages were constructed based on the proposed crosslinking method. We studied the influences of crosslinking density on micro-parameters and macro-properties employing molecular dynamics (MD) simulations. The results indicate that crosslinking of DGEBA/MTHPA is a contraction and exothermic process. The structural parameters and macroscopic properties are closely related to the degree of crosslinking. With the increase of crosslinking density, the mean square displacement (MSD) of the system decreases, and the segment motion in the models is weakened gradually, while, the fractional free volume (FFV) first decreases and then increases. In addition, the thermal and mechanical properties of DGEBA/MTHPA have a significant dependence on the crosslinking density. Increasing crosslinking density can improve the glass transition temperature (Tg), reduce the coefficient of thermal expansion (CTE), and enhances the static mechanical properties of DGEBA/MTHPA system. Furthermore, the relationship between microparameters and properties has been fully investigated. Free volume is an important factor that causes thermal expansion of DGEBA/MTHPA. Moreover, there is a negative correlation between MSD and mechanical moduli. By elevating temperature, the decline in mechanical moduli may be due to the exacerbated thermal motion of the molecules and the increasing MSD values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.