[Keywords: Ovarian cancer; tumor progression; EMT; NCI60] Supplemental material is available at http://www.genesdev.org.
MicroRNAs (miRNAs or miRs) are small noncoding RNAs capable of regulating gene expression at the translational level. Current evidence suggests that a significant portion of the human genome is regulated by microRNAs, and many reports have demonstrated that microRNA expression is deregulated in human cancer. The let-7 family of microRNAs, first discovered in Caenorhabditis elegans, is functionally conserved from worms to humans. The human let-7 family contains 13 members located on nine different chromosomes, and many human cancers have deregulated let-7 expression. A growing body of evidence suggests that restoration of let-7 expression may be a useful therapeutic option in cancers, where its expression has been lost. In this review, we discuss the role of let-7 in normal development and differentiation, and provide an overview of the relationship between deregulated let-7 expression and tumorigenesis. The regulation of let-7 expression, cancer-relevant let-7 targets, and the relationship between let-7 and drug sensitivity are highlighted.
The early phases of carcinogenesis resemble embryonic development, often involving the reexpression of embryonic mesenchymal genes. The NCI60 panel of human tumor cell lines can genetically be subdivided into two superclusters (SCs) that correspond to CD95 Type I and II cells. SC1 cells are characterized by a mesenchymal and SC2 cells by an epithelial gene signature, suggesting that SC1 cells represent less differentiated, advanced stages of cancer. miRNAs are small 20-to 22-nucleotide-long noncoding RNAs that inhibit gene expression at the posttranscriptional level. By performing miRNA expression analysis on 10 Type I and 10 Type II cells, we have determined that SC1 cells express low and SC2 cells high levels of the miRNA let-7, respectively, suggesting that let-7 is a marker for less advanced cancers. Expression of the let-7 target high-mobility group A2 (HMGA2), an early embryonic gene, but not of classical epithelial or mesenchymal markers such as Ecadherin or vimentin, inversely correlated with let-7 expression in SC1 and SC2 cells. Using ovarian cancer as a model, we demonstrate that expression of let-7 and HMGA2 is a better predictor of prognosis than classical markers such as E-cadherin, vimentin, and Snail. These data identify loss of let-7 expression as a marker for less differentiated cancer.HMGA2 ͉ miRNA ͉ ovarian cancer ͉ tumor progression ͉ supercluster
CD95 (also called Fas and APO-1) is a prototypical death receptor that regulates tissue homeostasis mainly in the immune system through induction of apoptosis 1-3. During cancer progression CD95 is frequently downregulated or cells are rendered apoptosis resistant 4,5 raising the possibility that loss of CD95 is part of a mechanism for tumour evasion. However, complete loss of CD95 is rarely seen in human cancers 4 and many cancer cells express large quantities of CD95 and are highly sensitive to CD95 mediated apoptosis in vitro. Furthermore, cancer patients frequently have elevated levels of the physiological ligand for CD95, CD95L 6. These data raise the intriguing possibility that CD95 could actually promote the growth of tumours through its nonapoptotic activities 7. Here we show that cancer cells in general, regardless of their CD95 apoptosis sensitivity, depend on constitutive activity of CD95, stimulated by cancer-produced CD95L, for optimal growth. Consistently, loss of CD95 in mouse models of ovarian cancer and liver cancer reduces cancer incidence as well as the size of the tumours. The tumorigenic activity of CD95 is mediated by a pathway involving JNK and c-Jun. These results demonstrate that CD95 plays a growth promoting role during tumorigenesis and suggest that efforts to inhibit its activity rather than to enhance its activation should be considered during cancer therapy.
MicroRNAs (miRNA) are small RNA molecules of f20 to 22 nucleotides that reduce expression of proteins through mRNA degradation and/or translational silencing. Each known miRNA has a large number of predicted targets. Members of the let-7/miR-98 family of miRNAs are up-regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1 has growth-promoting activities through stabilization of c-myc mRNA. We experimentally confirmed that IMP-1 is a direct let-7 target that promotes cell growth and motility of tumor cells, and we confirmed by proteomics analysis that IMP-1 and HMGA2 are major miRNA targets. Our data suggest that a substantial part of the growth inhibitory activities of let-7 comes from suppressing the expression of IMP-1. LOGs could be novel therapeutic targets and potential biomarkers for cancer treatment. [Cancer Res 2008;68(8):2587-91]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.