Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α+ conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3−/− mice also lack CD103+CD11b− DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3−/− mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103+CD11b− DCs, with the population of CD103+CD11b+ DCs remaining intact. Batf3−/− mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103+ DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α+ cDCs and nonlymphoid CD103+ DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α+ cDCs and nonlymphoid CD103+ DCs.
Dendritic cells (DC) mediate airway Ag presentation and play key roles in asthma and infections. Although DC subsets are known to perform different functions, their occurrence in mouse lungs has not been clearly defined. In this study, three major lung DC populations have been found. Two of them are the myeloid and plasmacytoid DC (PDC) well-characterized in other lymphoid organs. The third and largest DC population is the integrin αE (CD103) β7-positive and I-AhighCD11chigh-DC population. This population was found to reside in the lung mucosa and the vascular wall, express a wide variety of adhesion and costimulation molecules, endocytose avidly, present Ag efficiently, and produce IL-12. Integrin αEβ7+ DC (αE-DC) were distinct from intraepithelial lymphocytes and distinguishable from CD11bhigh myeloid and mPDCA-1+B220+Gr-1+ PDC populations in surface marker phenotype, cellular functions, and tissue localization. Importantly, this epithelial DC population expressed high levels of the Langerhans cell marker Langerin and the tight junction proteins Claudin-1, Claudin-7, and ZO-2. In mice with induced airway hyperresponsiveness and eosinophilia, αE-DC numbers were increased in lungs, and their costimulation and adhesion molecules were up-regulated. These studies show that αE-DC is a major and distinct lung DC population and a prime candidate APC with the requisite surface proteins for migrating across the airway epithelia for Ag and pathogen capture, transport, and presentation. They exhibit an activated phenotype in allergen-induced lung inflammation and may play significant roles in asthma pathogenesis.
Lung CD11chigh dendritic cells (DC) are comprised of two major phenotypically distinct populations, the CD11bhigh DC and the integrin αEβ7+ DC (CD103+ DC). To examine whether they are functionally distinguishable, global microarray studies and real-time PCR analysis were performed. Significant differences between the two major CD11chigh DC types in chemokine mRNA expression were found. CD11bhigh DC is a major secretory cell type and highly expressed at least 16 chemokine mRNA in the homeostatic state, whereas CD103+ DC highly expressed only 6. Intracellular chemokine staining of CD11chigh lung cells including macrophages, and ELISA determination of sort-purified CD11chigh cell culture supernatants, further showed that CD11bhigh DC produced the highest levels of 9 of 14 and 5 of 7 chemokines studied, respectively. Upon LPS stimulation in vitro and in vivo, CD11bhigh DC remained the highest producer of 7 of 10 of the most highly produced chemokines. Induction of airway hyperreactivity and lung inflammation increased lung CD11bhigh DC numbers markedly, and they produced comparable or higher amounts of 11 of 12 major chemokines when compared with macrophages. Although not a major producer, CD103+ DC produced the highest amounts of the Th2-stimulating chemokines CCL17/thymus and activation-related chemokine and CCL22/monocyte-derived chemokine in both homeostasis and inflammation. Significantly, CCL22/monocyte-derived chemokine exhibited regulatory effects on CD4+ T cell proliferation. Further functional analysis showed that both DC types induced comparable Th subset development. These studies showed that lung CD11bhigh DC is one of the most important leukocyte types in chemokine production and it is readily distinguishable from CD103+ DC in this secretory function.
Although high dose exposure to inhaled cat allergen (Fel d 1) can cause a form of tolerance (modified Th2 response), the T cell mechanism for this phenomenon has not been studied. T cell responses to Fel d 1 were characterized in both allergic (IgEpos) and modified Th2 (IgEnegIgGpos) responders as well as serum Ab-negative controls (IgEnegIgGneg). Fel d 1 stimulated high levels of IL-10 in PBMC cultures from all individuals, with evidence of Th2 and Th1 cytokine skewing in allergic and control subjects, respectively. Using overlapping peptides, epitopes at the N terminus of Fel d 1 chain 2 were shown to stimulate strong T cell proliferation and to preferentially induce IL-10 (peptide 2:1 (P2:1)) or IFN-γ (P2:2) regardless of the allergic status of the donor. Injection of cat extract during conventional immunotherapy stimulated expansion of IL-10- and IFN-γ-producing chain 2 epitope-specific T cells along with increased Fel d 1-specific serum IgG and IgG4 Ab. Six of 12 modified responders expressed the major HLA-DRB1 allele, *0701, and both P2:1 and P2:2 were predicted ligands for this allele. Cultures from DR7-positive modified responders produced the highest levels of IL-10 to P2:1 in addition to other major and minor epitopes within chains 1 and 2. In the presence of anti-IL-10 mAb, both T cell proliferation and IFN-γ production were enhanced in a Fel d 1- and epitope-specific manner. We conclude that IL-10-producing T cells specific for chain 2 epitopes are relevant to tolerance induction, and that DR7-restricted recognition of these epitopes favors a modified Th2 response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.