Cuttlefish bone (CB) is an attractive natural biomaterial source to obtain hydroxyapatite (HAp). In this study, a porous polycaprolactone (PCL) scaffold incorporating CB-derived HAp (CB-HAp) powder was fabricated using the solvent casting and particulate leaching method. The presence of CB-HAp in PCL/CB-HAp scaffold was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and porosity analysis showed that the average pore dimension of the fabricated scaffold was approximately 200-300 μm, with ∼85% porosity, and that the compressive modulus increased after addition of CB-HAp powders. In vitro tests such as cell proliferation assay, cytotoxicity analysis, cell attachment observations, and alkaline phosphatase activity assays showed that the PCL/CB-HAp scaffold could improve the proliferation, viability, adherence, and osteoblast differentiation rate of MG-63 cells. When surgically implanted into rabbit calvarial bone defects, consistent with the in vitro results, PCL/CB-HAp scaffold implantation resulted in significantly higher new bone formation than did implantation of PCL alone. These findings suggest that addition of CB-HAp powder to the PCL scaffold can improve cellular response and that the PCL/CB-HAp composite scaffold has great potential for use in bone tissue engineering.
Bone reconstruction in clinical settings often requires bone substitutes. Hydroxyapatite (HAp) is a widely used bone substitute due to its osteoconductive properties and bone bonding ability. The aim of this study was to evaluate HAp granules derived from cuttlefish bone (CB-HAp) as a substitute biomaterial for bone grafts. In this study, HAp granules were prepared from raw CB by using a hydrothermal reaction. The formation of HAp from CB was confirmed by scanning electron microscopy and x-ray diffraction analysis. The bioactivity of the CB-HAp granules was evaluated both in vitro and in vivo. Our results show that CB-HAp is non-toxic and that CB-HAp granules supported improved cell adhesion, proliferation and differentiation compared to stoichiometric synthetic HAp granules. Furthermore, in vivo bone defect healing experiments show that the formation of bone with CB-HAp is higher than that with pure HAp. These results show that CB-HAp granules have excellent potential for use as a bone graft material.
BackgroundAngiogenin (ANG) is a potent stimulator of angiogenesis. The aim of this study was to fabricate an ANG-loaded scaffold and to evaluate its angiogenic and osteogenic effects. In this study, we fabricated an ANG-loaded scaffold using bovine bone powder and fibrin glue. We then evaluated the structural, morphological, and mechanical properties of the scaffold and the in vitro release profile of ANG. Cell proliferation, viability, and adhesion were evaluated using endothelial cells in vitro, and angiogenesis and new bone formation were evaluated using a rabbit calvarial defect model in vivo.ResultsMicro-computed tomography imaging showed that the bone powder was uniformly distributed in the scaffold, and scanning electron microscopy showed that the bone powder was bridged by polymerized fibrin. The porosity and compressive strength of the scaffolds were ~60 % and ~0.9 MPa, respectively, and were not significantly altered by ANG loading. In vitro, at 7 days, approximately 0.4 μg and 1.3 μg of the ANG were released from the FB/ANG 0.5 and FB/ANG 2.0, respectively and sustained slow release was observed until 25 days. The released ANG stimulated cell proliferation and adherence and was not cytotoxic. Furthermore, in vivo implantation resulted in enhanced angiogenesis, and new bone formation depended on the amount of loaded ANG.ConclusionsThese studies demonstrate that a fibrin and bone powder scaffold loaded with ANG might be useful to promote bone regeneration by enhanced angiogenesis.
Osteogenesis and angiogenesis, including cell-cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan-induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan-MSC-CM). Next, the angiogenic activity of Fucoidan-MSC-CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan-induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor-specific binding inhibitor. Furthermore, Fucoidan-MSC-CM increased the phosphorylation of mitogen-activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan-induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.