Operation of environmentally responsive building components requires rapid prediction of the optimal adaptation of geometric shapes and positions, and such responsive configuration needs to be identified during the design process as early as possible. However, building simulation practices to characterize optimized shapes of various geometric design candidates are limited by complex simulation procedures, slow optimization, and lack of site information. This study suggests a practical approach to the design of responsive building façades by integrating on-site sensors, building performance simulation (BPS), machine-learning, and 3D geometry modeling on a unified design interface. To this end, a novel and efficient hybrid optimization algorithm, tabu-based adaptive pattern search simulated annealing (T-APSSA), was developed and integrated with wireless sensor data communication (using nRF24L01 and ESP8266 WiFi modules) on a parametric visual programming language (VPL) interface Rhino Grasshopper (0.9.0076, McNeel, Seattle, USA). The effectiveness of T-APSSA for early-stage BPS and optimal design is compared with other metaheuristic algorithms, and the proposed framework is validated by experimental optimal envelope (window shading) designs for single (daylight) and multiple (daylight and energy) objectives. Test results demonstrate the improved efficiency of T-APSSA in calculations (two to four times faster than other algorithms). This T-APSSA-integrated sensor-enabled design optimization practice supports rapid BPS and digital prototyping of responsive building façade design.
Abstract:As policies for energy efficiency of buildings are being actively implemented, building energy performance improvement is urgently required. However, in Korea, information on measures and technologies for building energy efficiency is dispersed and concrete methods are not established, making it difficult to apply effective measures. Therefore, it is required to apply and evaluate energy efficiency measures through database construction integrating diverse information. In this study, the energy efficiency measures in the architectural sector that satisfy domestic legal standards are built. Because of the economic evaluation is necessary for the constructed alternatives, an economic efficiency database was established. The target building was set up, and energy efficiency measures were derived. In addition, a methodology that can induce energy efficient decision making of buildings was proposed, and the energy use evaluation and the economic analysis for each of the alternatives derived from applying the methodology to the target building were carried out. Furthermore, the optimal energy efficiency measures for the target building were suggested through the application of the decision-making process.
Controlling indoor relative humidity is of great importance in the evaluation of thermal comfort and perceived air quality. This study aimed to develop a new mineral fiber board as an interior surface material with high capacity of moisture adsorption and desorption. A series of experiments were carried out in this study using an accurately controlled chamber, mock-up rooms, and real-scale test houses. The chamber test was conducted to measure the moisture adsorption and desorption content of the materials. In the mock-up rooms, the effects of the new mineral fiber board on indoor humidity were investigated under three different conditions. The three different conditions include: 1) a mock-up room with an electric humidifier, 2) a mock-up room with an open water basin, and 3) a mock-up room without artificial humidifying measures. In the real-scale test houses, the efficiency of the new mineral fiber board was also investigated under two different conditions of low-humidity and very high-humidity. Through the chamber test, it was found that the moisture adsorption content of the new mineral fiber board was three times more than that of the ordinary mineral fiber board. The moisture desorption content of the new board was also two and half times more than that of the ordinary mineral fiber board. In the mock-up test, the newly developed mineral fiber board could also control indoor humidity levels effectively by desorbing moisture under low humidity conditions. However, through the real-scale test, it was found that the new mineral fiber board could not absorb or desorb indoor moisture effectively if extremely dry or humid conditions last for a long time. Overall, the new mineral fiber board was proven to be effective in controlling indoor moisture except under extremely dry or humid conditions.
ECO2 (building energy efficiency rating program) and passive energy conservation measures (ECMs) were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR) and horizontal shading angle. The performance elements are the thermal transmittance (U-value) of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC) of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.