The advent of high‐throughput sequencing methods allowed researchers to fully characterize microbial community in environmental samples, which is crucial to better understand their health effects upon exposures. In our study, we investigated bacterial and fungal community in indoor and outdoor air of nine classrooms in three elementary schools in Seoul, Korea. The extracted bacterial 16S rRNA gene and fungal ITS regions were sequenced, and their taxa were identified. Quantitative polymerase chain reaction for total bacteria DNA was also performed. The bacterial community was richer in outdoor air than classroom air, whereas fungal diversity was similar indoors and outdoors. Bacteria such as Enhydrobacter, Micrococcus, and Staphylococcus that are generally found in human skin, mucous membrane, and intestine were found in great abundance. For fungi, Cladosporium, Clitocybe, and Daedaleopsis were the most abundant genera in classroom air and mostly related to outdoor plants. Bacterial community composition in classroom air was similar among all classrooms but differed from that in outdoor air. However, indoor and outdoor fungal community compositions were similar for the same school but different among schools. Our study indicated the main source of airborne bacteria in classrooms was likely human occupants; however, classroom airborne fungi most likely originated from outdoors.
Mucin (Mu), a biological substance extracted from jellyfish (Aurelia aurita), was used to reduce the toxic effect of polystyrene nanoplastics (PS-NP) combined with phenanthrene (Phe) in the aquatic environment of zebrafish (Danio rerio), among other aquatic organisms. Mu showed a high binding capacity, as it bound to 92.84% and 92.87% of the PS-NPs (concentration of 2.0 mg/L) after 0.5 h and 8 h, respectively. A zebrafish embryo development test was conducted to check for any reduction in toxicity by Mu. When exposed to PS-NP + Mu and PS-NP + Phe + Mu, respectively, the hatching rates were 88.33 ± 20.21% and 93.33 ± 2.89%, respectively; these results were not significantly different from those of the control group. However, the hatching rate with the addition of Mu increased, compared to that of the PS-NP (71.83 ± 13.36%) and Phe (37.50 ± 19.83%) treatments, and the morphological abnormality rate decreased. The presence of Mu was also found to obstruct the absorption of PS-NP and PS-NP + Phe by the zebrafish. When zebrafish embryos were exposed to PS-NP at a concentration of 5.0 mg/L, the hatching rate differed significantly from that of the control group, and the expression of CAT and p53 genes increased significantly, but the expression of Bcl-2 decreased significantly. An mRNA sequence analysis revealed that the gene expression levels of the test group containing Mu were similar to those of the control group. These results infer that Mu can be used as a biological material to collect and remove PS-NPs from aquatic environments and reduce toxicity.
Due to an unfortunate oversight during the e.proofing, Table 3 has been given erroneously. It should be read:The original article has been corrected.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.