Increasing energy expenditure through brown adipocyte recruitment is a promising approach to combat obesity. We report here the comprehensive profiling of the epigenome and transcriptome throughout the lineage commitment and differentiation of C3H10T1/2 mesenchymal stem cell line into brown adipocytes. Through direct comparison to datasets from differentiating white adipocytes, we systematically identify stage- and lineage-specific coding genes, lncRNAs and microRNAs. Utilizing chromatin state maps, we also define stage- and lineage-specific enhancers, including super-enhancers, and their associated transcription factor binding motifs and genes. Through these analyses, we found that in brown adipocytes, brown lineage-specific genes are pre-marked by both H3K4me1 and H3K27me3, and the removal of H3K27me3 at the late stage is necessary but not sufficient to promote brown gene expression, while the pre-deposition of H3K4me1 plays an essential role in poising the brown genes for expression in mature brown cells. Moreover, we identify SOX13 as part of a p38 MAPK dependent transcriptional response mediating early brown cell lineage commitment. We also identify and subsequently validate PIM1, SIX1 and RREB1 as novel regulators promoting brown adipogenesis. Finally, we show that SIX1 binds to adipogenic and brown marker genes and interacts with C/EBPα, C/EBPβ and EBF2, suggesting their functional cooperation during adipogenesis.
Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies.
Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.