Background
Circular RNA (circRNA) plays key regulatory roles in the development of many diseases. However the biological functions and potential molecular mechanisms of circRNA in the injury and repair of intestinal mucosa in mice after severe burns are yet to be elucidated.
Methods
Cell counting kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), wound healing and transwell assays were used to detect cell proliferation and migration ability. Real-time quantitative PCR was used to identify the expression of circRNA, microRNA and messenger RNA. Nuclear and cytoplasmic separation experiments were employed to perceive the location of circRNA_Maml2. Finally, in vitro and in vivo experiments were conducted to study the repairing effect of circRNA_Maml2 on the intestinal mucosa of mice after severe burns.
Results
When compared with the control group, the expression of circRNA_Maml2 was significantly reduced in the severe burn group. Furthermore, overexpression of circRNA_Maml2 promoted the proliferation and migration of CT26.wt cells in vivo and the repair of damaged intestinal mucosa in vitro. CircRNA_Maml2 acted as a sponge adsorption molecule for miR-93-3p to enhance the expression of frizzled class receptor 7 and activate the downstream Wnt/β-catenin pathway, thereby promoting the repair of the intestinal mucosa.
Conclusions
Our findings demonstrate that circRNA_Maml2 regulates the miR-93-3p/FZD7/Wnt/β-catenin pathway and promotes the repair of damaged intestinal mucosa. Hence, circRNA_Maml2 is a potential therapeutic target to promote intestinal mucosal repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.