Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
MicroRNAs (miRNAs) constitute a novel, phylogenetically extensive family of small RNAs (~22 nucleotides) with potential roles in gene regulation. Apart from the ®nding that miRNAs are produced by Dicer from the precursors of~70 nucleotides (pre-miRNAs), little is known about miRNA biogenesis. Some miRNA genes have been found in close conjunction, suggesting that they are expressed as single transcriptional units.Here, we present in vivo and in vitro evidence that these clustered miRNAs are expressed polycistronically and are processed through at least two sequential steps: (i) generation of the~70 nucleotide pre-miRNAs from the longer transcripts (termed pri-miRNAs); and (ii) processing of pre-miRNAs into mature miRNAs. Subcellular localization studies showed that the ®rst and second steps are compartmentalized into the nucleus and cytoplasm, respectively, and that the pre-miRNA serves as the substrate for nuclear export. Our study suggests that the regulation of miRNA expression may occur at multiple levels, including the two processing steps and the nuclear export step. These data will provide a framework for further studies on miRNA biogenesis.
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of the supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite program (SDP) relaxations are obtained. Numerical results from various test problems are included to show the improved performance of the SOS and SDP relaxations.
Plants constantly monitor environmental fluctuations to optimize their growth and metabolism. One example is adaptive growth occurring in response to biotic and abiotic stresses. Here, we demonstrate that GH3-mediated auxin homeostasis is an essential constituent of the complex network of auxin actions that regulates stress adaptation responses in Arabidopsis. Endogenous auxin pool is regulated, at least in part, through negative feedback by a group of auxin-inducible GH3 genes encoding auxin-conjugating enzymes. An Arabidopsis mutant, wes1-D, in which a GH3 gene WES1 is activated by nearby insertion of the 35 S enhancer, exhibited auxin-deficient traits, including reduced growth and altered leaf shape. Interestingly, WES1 is also induced by various stress conditions as well as by salicylic acid and abscisic acid. Accordingly, wes1-D was resistant to both biotic and abiotic stresses, and stress-responsive genes, such as pathogenesis-related genes and CBF genes, were upregulated in this mutant. In contrast, a T-DNA insertional mutant showed reduced stress resistance. We therefore propose that GH3-mediated growth suppression directs reallocation of metabolic resources to resistance establishment and represents the fitness costs of induced resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.