Histone demethylases are known to play important roles in the determination of the fate of stem cells and in cancer progression. In this study, we show that the lysine 4 of histone H3 (H3K4), lysine-specific demethylase 5A (KDM5A) is essential for the repression of astrocyte differentiation in neural progenitor cells (NPCs), and its expression is regulated by translational machinery. Knockdown of KDM5A in NPCs increased astrocytogenesis, and conversely, KDM5A overexpression reduced the transcriptional activity of the Gfap promoter. Induction of astrocytogenesis by ciliary neurotrophic factor (CNTF) or small interfering RNA-induced knockdown of KDM5A decreased KDM5A recruitment to the Gfap promoter and increased H3K4 methylation. The transcript level of Kdm5a was high, whereas KDM5A protein level was low in CNTF induced astrocytes. During astroglial differentiation, translational activity indicated by the phosphorylation of eukaryotic translation initiation factor (eIF)4E was decreased. Treatment of NPCs with the cercosporamide, a MAPK-interacting kinases inhibitor, reduced eIF4E phosphorylation and KDM5A protein expression, increased GFAP levels, and enhanced astrocytogenesis. These data suggest that KDM5A is a key regulator that maintains NPCs in an undifferentiated state by repressing astrocytogenesis and that its expression is translationally controlled during astrocyte differentiation. Thus, KDM5A is a promising target for the modulation of NPC fate.-Kong, S.-Y., Kim, W., Lee, H.-R., Kim, H.-J. The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells.
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.
Identification of small molecules that direct neural stem cells (NSCs) into specific cell types would be helpful to understand the molecular mechanisms involved in regulation of NSC fate, and facilitate the development of therapeutic applications. In the current study, we developed and screened small molecules that can modulate the fate of NSCs that are derived from rat fetal cortex. Among these compounds, compounds 5 and 6 successfully differentiated NSCs into astrocytes and neurons, respectively. Compound 5 induced astrocytogenesis by increasing expression of interleukin-6, bone morphogenetic protein 2 and leukemia inhibitory factor and through consequent phosphorylation of signal transducer and activator of transcription 3 and Sma- and Mad-related protein 1/5/8 in NSCs. In addition, compound 5 increased the expression of fibroblast growth factor (FGF) 2 and FGF8 which may regulate the branching and morphology of astrocytes. Taken together, our results suggest that these small molecules can serve as a useful tool to study cell fate determination in NSCs and be used as an inexpensive alternative to cytokines to study mechanisms of astrocytogenesis.
Recently identified new potential functions of antidepressants in the treatment of neurodegenerative will be introduced. Antidepressants are reported to regulate stem cell fate to regenerate neurons in the adult hippocampus and are effective in reducing toxic amyloid peptides and are known to increase neurotrophic factor such as brain-derived neurotrophic factor. Clinical trial data support that antidepressants have potential to treat Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.