The Permeable Reactive Barriers (PRBs) are relatively simple, promising technology for groundwater remediation. A PRBs consisting of two reactive barriers (zero valent iron-barrier and bio-barrier) were designed to evaluate the application and feasibility of the barriers for the removal of wide range of pollutants from synthetic water. After 470 days of Multi-PRBs column operation, the pH level in the water sample is increased from 4 to 7, whereas the oxidation reduction potential (ORP) is decreased to -180 mV. Trichloroethylene (TCE), heavy metals, and nitrate were completely removed in the zero valent iron-barrier. Ammonium produced during nitrate reduction is removed in the biologically reactive zone of the column. The results of the present study suggest that Multi-PRBs system is an effective alternate method to confine wide range of pollutants from contaminated groundwater.
The present study investigated the reactivity and ability of permeable reactive barriers [zero-valent iron (ZVI)-barrier plus biobarrier) to remove various contaminants (Cd, As, Zn, Cu, Mn, Cr, NO 3 − , NH 4 + , and COD cr ) from synthetic leachate. Two different reactive materials were used in this study, namely ZVI and autoclaved lightweight concrete (ALC). After 90 days of column operation, the contaminant profi les were determined along the length of the columns. The heavy metals were extensively removed in the bio-ALC and sequential barriers (ZVI plus bio-ALC), however the removal effi ciencies for the heavy metals Zn and Cr in the ALC and bio-ALC barriers were comparatively low. Nitrate was completely removed (>99.9%) in the ALC, bio-ALC, and sequential barriers. More than 50% of the produced ammonium and organic materials were removed in the biologically reactive zone of the sequential barriers. The results of the present study suggest that sequential barriers are one of the best solutions for in situ remediation and that they can be applied to clean up the leachate released from landfi lls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.