Insulator fault detection is one of the essential tasks for high-voltage transmission lines’ intelligent inspection. In this study, a modified model based on You Only Look Once (YOLO) is proposed for detecting insulator faults in aerial images with a complex background. Firstly, aerial images with one fault or multiple faults are collected in diverse scenes, and then a novel dataset is established. Secondly, to increase feature reuse and propagation in the low-resolution feature layers, a Cross Stage Partial Dense YOLO (CSPD-YOLO) model is proposed based on YOLO-v3 and the Cross Stage Partial Network. The feature pyramid network and improved loss function are adopted to the CSPD-YOLO model, improving the accuracy of insulator fault detection. Finally, the proposed CSPD-YOLO model and compared models are trained and tested on the established dataset. The average precision of CSPD-YOLO model is 4.9% and 1.8% higher than that of YOLO-v3 and YOLO-v4, and the running time of CSPD-YOLO (0.011 s) model is slightly longer than that of YOLO-v3 (0.01 s) and YOLO-v4 (0.01 s). Compared with the excellent object detection models YOLO-v3 and YOLO-v4, the experimental results and analysis demonstrate that the proposed CSPD-YOLO model performs better in insulator fault detection from high-voltage transmission lines with a complex background.
Automatic inspection of insulators from high-voltage transmission lines is of paramount importance to the safety and reliable operation of the power grid. Due to different size insulators and the complex background of aerial images, it is a difficult task to recognize insulators in aerial views. Most of the traditional image processing methods and machine learning methods cannot achieve sufficient performance for insulator detection when diverse background interference is present. In this study, a deep learning method—based on You Only Look Once (YOLO)—will be proposed, capable of detecting insulators from aerial images with complex backgrounds. Firstly, aerial images with common aerial scenes were collected by Unmanned Aerial Vehicle (UAV), and a novel insulator dataset was constructed. Secondly, to enhance feature reuse and propagation, on the basis of YOLOv3 and Dense-Blocks, the YOLOv3-dense network was utilized for insulator detection. To improve detection accuracy for different sized insulators, a structure of multiscale feature fusion was adapted to the YOLOv3-dense network. To obtain abundant semantic information of upper and lower layers, multilevel feature mapping modules were employed across the YOLOv3-dense network. Finally, the YOLOv3-dense network and compared networks were trained and tested on the testing set. The average precision of YOLOv3-dense, YOLOv3, and YOLOv2 were 94.47%, 90.31%, and 83.43%, respectively. Experimental results and analysis validate the claim that the proposed YOLOv3-dense network achieves good performance in the detection of different size insulators amid diverse background interference.
Insulators play a significant role in high-voltage transmission lines, and detecting insulator faults timely and accurately is important for the safe and stable operation of power grids. Since insulator faults are extremely small and the backgrounds of aerial images are complex, insulator fault detection is a challenging task for automatically inspecting transmission lines. In this paper, a method based on deep learning is proposed for insulator fault detection in diverse aerial images. Firstly, to provide sufficient insulator fault images for training, a novel insulator fault dataset named “InSF-detection” is constructed. Secondly, an improved YOLOv3 model is proposed to reuse features and prevent feature loss. To improve the accuracy of insulator fault detection, SPP-networks and a multi-scale prediction network are employed for the improved YOLOv3 model. Finally, the improved YOLOv3 model and the compared models are trained and tested on the “InSF-detection”. The average precision (AP) of the improved YOLOv3 model is superior to YOLOv3 and YOLOv3-dense models, and just a little (1.2%) lower than that of CSPD-YOLO model; more importantly, the memory usage of the improved YOLOv3 model is 225 MB, which is the smallest between the four compared models. The experimental results and analysis validate that the improved YOLOv3 model achieves good performance for insulator fault detection in aerial images with diverse backgrounds.
Insulators identification and their missing defect detection are of paramount importance for the intelligent inspection of high-voltage transmission lines. As the backgrounds are complex, some insulators may be occluded, and the missing defect of the insulator is so small that it is not easily detected from aerial images with different backgrounds. To address the above issues, in this study, a cascaded You Only Look Once (YOLO) models are mainly explored to perform insulators and their defect detection in aerial images. Firstly, the datasets used for insulators location and missing defect detection are created. Secondly, a new model is proposed to locate the position of insulators, which is improved in the feature extraction network and multisacle prediction network based on previous YOLOv3-dense model. An improved YOLOv4-tiny model is used to conduct missing defect detection on the detected insulators. And then, the proposed YOLO models are trained and tested on the built datasets, respectively. Finally, the final models are cascaded for insulators identification and their missing defect detection. The average precision of missing defect detection can reach 98.4%, which is 5.2% higher than that of faster RCNN and 10.2% higher than that of SSD. The running time of the cascaded YOLO models for missing defect detection can reach 106 frames per second. Extensive experiments demonstrate that the proposed deep learning models achieve good performance in insulator identification and its missing defect detection from the inspection of high-voltage transmission lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.