Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution.
To overcome rubber tree (RT) tissue culture explant source limitations, the current study aimed to establish a new Hevea brasiliensis somatic embryogenesis (SE) system, laying the technical foundation for the establishment of an axillary-bud-based seedling regeneration system. In this study, in vitro plantlets of Hevea brasiliensis Chinese Academy of Tropical Agricultural Sciences 917 (CATAS 917) were used as the experimental materials. Firstly, the optimum conditions for axillary bud swelling were studied; then, the effects of phenology, the swelling time of axillary buds (ABs), and medium of embryogenic callus induction were studied. Plantlets were obtained through somatic embryogenesis. Flow cytometry, inter-simple sequence repeat (ISSR molecular marker) and chromosome karyotype analysis were used to study the genetic stability of regenerated plants along with budding seedlings (BSs) and secondary somatic embryo seedlings (SSESs) as the control. The results show that the rubber tree’s phenology period was mature, and the axillary bud induction rate was the highest in the 2 mg/L 6-benzyladenine (6-BA) medium (up to 85.83%). Later, 3-day-old swelling axillary buds were used as explants for callogenesis and somatic embryogenesis. The callus induction rate was optimum in MH (Medium in Hevea) + 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) + 1.5 mg/L 1-naphthalene acetic acid (NAA) + 1.5 mg/L Kinetin (KT) + 70 g/L sucrose (56.55%). The regenerated plants were obtained after the 175-day culture of explants through callus induction, embryogenic callus induction, somatic embryo development, and plant regeneration. Compared with the secondary somatic embryo seedling control, axillary bud regeneration plants (ABRPs) were normal diploid plants at the cellular and molecular level, with a variation rate of 7.74%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.