Postoperative cognitive dysfunction increases mortality and morbidity in perioperative patients and has become a major concern for patients and caregivers. Previous studies demonstrated that synaptic plasticity is closely related to cognitive function, anesthesia and surgery inhibit synaptic function. In central nervous system, autophagy is vital to synaptic plasticity, homeostasis of synapticproteins, synapse elimination, spine pruning, proper axon guidance, and when dysregulated, is associated with behavioral and memory functions disorders. The mammalian target of rapamycin (mTOR) negatively regulates the process of autophagy. This study aimed to explore whether rapamycin can ameliorate anesthesia/surgery-induced cognitive deficits by inhibiting mTOR, activating autophagy and rising synaptic plasticity-related proteins in the hippocampus. Aged C57BL/6J mice were used to establish POCD models with exploratory laparotomy under isoflurane anesthesia. The Morris Water Maze (MWM) was used to measure reference memory after anesthesia and surgery. The levels of mTOR phosphorylation (p-mTOR), Beclin-1 and LC3-II were examined on postoperative days 1, 3 and 7 by western blotting. The levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD-95) in the hippocampus were also examined by western blotting. Here we showed that anesthesia/surgery impaired reference memory and induced the activation of mTOR, decreased the expression of autophagy-related proteins such as Beclin-1 and LC3-II. A corresponding decline in the expression of neuronal/synaptic, plasticity-related proteins such as SYN and PSD-95 was also observed. Pretreating mice with rapamycin inhibited the activation of mTOR and restored autophagy function, also increased the expression of SYN and PSD-95. Furthermore, anesthesia/surgery-induced learning and memory deficits were also reversed by rapamycin pretreatment. In conclusion, anesthesia/surgery induced mTOR hyperactivation and autophagy impairments, and then reduced the levels of SYN and PSD-95 in the hippocampus. An mTOR inhibitor, rapamycin, ameliorated anesthesia/surgery-related cognitive impairments by inhibiting the mTOR activity, inducing activation of autophagy, enhancing SYN and PSD-95 expression.
With the aging of the world population and advances in medical and health technology, more and more elderly patients are undergoing anesthesia and surgery, and perioperative neurocognitive dysfunction (PND) is receiving increasing attention. The latest definition of PND, published simultaneously in November 2018 in 6 leading journals in the field of anesthesiology, clarifies that PND includes preoperatively cognitive impairment, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction and meets the diagnostic criteria for neurocognitive impairment in the Diagnostic and Statistical Manual of Mental Disorders -fifth edition (DSM-5). The time frame for PND includes preoperatively and within 12 months postoperatively. Recent studies have shown that gut microbiota regulates central nervous function and behavior through the gut microbiota - gut - brain axis, but the role of the axis in the pathogenesis of PND remains unclear. Therefore, this article reviews the mechanism of the role of gut microbiota-gut-brain axis in PND, so as to help explore reasonable early treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.