The GluR2 subunit controls three key features of ion flux through the AMPA subtype of glutamate receptors-calcium permeability, inward rectification, and channel block by external polyamines, but whether each of these features is equally sensitive to GluR2 abundance is unknown. The relations among these properties were compared in native AMPA receptors expressed by acutely isolated hippocampal interneurons and in recombinant receptors expressed by Xenopus oocytes. The shape of current-voltage (I-V) relations between -100 and +50 mV for either recombinant or native AMPA receptors was well described by a Woodhull block model in which the affinity for internal polyamine varied over a 1000-fold range in different cells. In oocytes injected with mixtures of GluR2:non-GluR2 mRNA, the relative abundance of GluR2 required to reduce the log of internal blocker affinity by 50% was two- to fourfold higher than that needed to half-maximally reduce divalent permeability or channel block by external polyamines. Likewise, in interneurons the affinity of externally applied argiotoxin for its blocking site was a steep function of internal blocker affinity. These results indicate that the number of GluR2 subunits in AMPA receptors is variable in both oocytes and interneurons. More GluR2 subunits in an AMPA receptor are required to maximally reduce internal blocker affinity than to abolish calcium permeability or external polyamine channel block. Accordingly, single-cell RT-PCR showed that approximately one-half of the physiologically characterized interneurons exhibiting inwardly rectifying AMPA receptors expressed detectable levels of edited GluR2. The physiological effects of a moderate change in GluR2 relative abundance, such as occurs after ischemia or seizures or after chronic exposure to morphine, thus will be dependent on the ambient GluR2 level in a cell-specific manner.
IntroductionTargeted mAb-based therapies provide effective and safe treatments for hematologic malignancies. Rituximab, which specifically targets the B-cell antigen CD20, has had the greatest success, revolutionizing the treatment of the 2 most common forms of nonHodgkin lymphoma: follicular and diffuse large B-cell lymphoma. In addition, mAb-based therapies targeting CD52 (alemtuzumab) and CD33 (gemtuzumab ozogamicin) have been approved for the treatment of chronic lymphocytic leukemia and acute myelogenous leukemia, respectively. Despite the progress of these strategies, they do have limitations. Only a fraction of patients respond to rituximab, and the majority of those who do respond will eventually relapse. Treatment with alemtuzumab and gemtuzumab are limited by safety concerns, and many additional hematologic malignancies do not respond to treatment with any of these targeted therapies. Various therapies based on alternate mAbs, including second-generation anti-CD20 mAbs and those targeting alternate cell-surface proteins such as CD19, CD22, CD30, CD37, CD40, and CD74, have been developed and are at different stages of clinical testing in the hopes of providing approaches to treating a broader spectrum of hematologic malignancies that are poorly served by existing therapies. 1,2 Whereas targeting of cell-surface antigens themselves can mediate antitumor activity through the induction of apoptosis, most mAb-based activity against hematologic malignancies is reliant on either Fc-mediated effector functions such as complementdependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity 3,4 or is engineered through the conjugation of an immunotoxin or radiolabeled isotope. 1 Considering the potential of naturally occurring CTLs to mediate cell lysis, various strategies have also been explored to recruit CTLs to mediate tumor cell killing. Tumor-specific CTLs exert extremely potent effects through recognition of the corresponding peptide/MHC complex recognized by their TCR, and are among the most potent cells that mediate antitumor effects. A major limitation in generating tumorspecific CTLs in vivo is that their induction requires the use of vaccine strategies, such as dendritic cell-based vaccines, 5 that are capable of breaking tolerance to cancer self-antigens. One alternative is ex vivo expansion and activation of rare, tumor-specific CTLs for reinfusion into cancer patients. 6 However, cancer cells can down-regulate MHC expression as an escape mechanism, thus preventing the ability of CTLs to recognize their antigenic peptide. The genetic manipulation of patients' T cells to express chimeric antigen receptors comprising a tumor-specific antigen and T cellactivating properties before their adoptive transfer provides a non-MHC-restricted approach to targeting cancer, as was shown recently in the treatment of lymphoma with T cells engineered to recognize CD19. 7 However, the patient-specific manipulation and risk associated with this procedure represent major limitations to its expanded use. Alt...
The phenylethanolamines, ifenprodil and CP-101,606, are NMDA receptor antagonists with promising neuroprotective properties. In recombinant NMDA receptors expressed in Xenopus oocytes, we found that these drugs inhibit NMDA receptors through a unique mechanism, making the receptor more sensitive to inhibition by protons, an endogenous negative modulator. These findings support a critical role for the proton sensor in gating the NMDA receptor and point the way to identifying a context-dependent NMDA receptor antagonist that is inactive at physiological pH, but is a potent inhibitor during the acidic conditions that arise during epilepsy, ischemia and brain trauma.
Synaptic activity causes significant fluctuations in proton concentrations in the brain. Changes in pH can affect neuronal excitability by acting on ligand-gated channels, including those gated by glutamate. We show here a subunit-dependent regulation of native and recombinant kainate receptors by physiologically relevant proton concentrations. The effect of protons on kainate receptors is voltage-independent and subunit dependent, with GluR5(Q), GluR6(Q), GluR6(R), and GluR6(R)/KA2 receptors being inhibited and GluR6(R)/KA1 receptors being potentiated. Mutation of two acidic residues (E396 and E397) to neutral amino acids significantly reduces the proton sensitivity of the GluR6(Q) receptor, suggesting that these residues influence proton inhibition. The endogenous polyamine spermine potentiated GluR6(R) kainate currents in a pH-dependent manner, producing an acidic shift in the IC(50) for proton inhibition. Spermine potentiation of GluR6(R) is voltage independent, does not affect receptor desensitization, and only slightly shifts the agonist affinity of the receptor. These results suggest that, similar to its action on NMDA receptors, spermine potentiates kainate receptors by relieving proton inhibition of the receptor. Furthermore, they suggest that fluctuations in brain pH during both normal and pathological processes could regulate synaptic transmission and plasticity mediated by kainate receptors.
AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors are assembled from four subunits, GluR1-4. Although GluR4 is widely expressed in brain its abundance is less than GluR1-3. We have isolated 5 kb of the rat GluR4 promoter region and analyzed its capacity to drive expression of a luciferase reporter gene in transfected rat cortical neurons and glia, and C6 glioma cells. Multiple transcriptional start sites were identified in a GC-rich region lacking TATA-boxes between ) 1090 and ) 1011 bp from ATG. In transfected mixed cortical cultures, luciferase expression driven by GluR4 promoter segments were found predominantly in TuJ1-positive neurons, indicating neuronal preference of GluR4. The GluR4 promoter fragments were 6-12-fold more active in neurons than glia, compared with a 30-fold neuronal selectivity of GluR2. Deletion of the GluR4 transcriptional initiation region decreased luciferase activity in neurons, but increased activity in C6 cells, suggesting that regulatory elements governing neuronal expression reside in this region. An intron within the 5¢-untranslated region and Sp1, IK2 and E-box sites are conserved in the rat, mouse and human GluR4 promoters. The relative activity of GluR4 and GluR2 promoters in transfected cells correlates with their expression in brain, and in both promoters regulatory elements for neuronal expression reside near the initiation sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.