Pekanbaru still using conventional traffic light control system. Pekanbaru as the capital of Riau Province is predicted udergo the increased of urban population by 54.5% in 2025. It is important for Pekanbaru to immediately implement smart and efficient traffic management system, so that traffic congestion can be resolved quickly. This research paper provides a design solution for smart traffic light management (Smart Traffic Control System), based on object detection technology that uses deep learning to detect the number and type of vehicles. The number of vehicle is the basis for determining the green light timer automatically. The Smart Traffic Control System (STCS) is integrated with a web based geographic information system (smart map) that can display the current condition (picture, the number of vehicle, congestion level) of each STCS location. This integrated system has been tested on a traffic light prototype, using a mini computer and a miniature vehicle. This integrated system is able to detect 9 out of 12 vehicles, and able to send data regularly to the smart map. Keywords: deep learning; smart mobility; smart traffic control system Abstrak: Pengaturan lampu lalu lintas di Kota Pekanbaru masih dilakukan secara konvensional. Pekanbaru sebagai ibukota Provinsi Riau diprediksikan akan mengalami peningkatan jumlah penduduk perkotaan sebesar 54,5% pada tahun 2025. Dengan melihat predikisi ini, penting bagi kota Pekanbaru untuk segera memiliki tata kelola lalu lintas yang cerdas dan efisien agar kemacetan dapat ditanggulangi dengan cepat. Penelitian ini memberikan rancangan solusi untuk tata kelola lampu lalu lintas cerdas (Smart Traffic Control System), berbasis teknologi object detection yang menggunakan deep learning untuk mendeteksi jumlah dan jenis kendaraan. Jumlah kendaraan menjadi dasar penentuan timer lampu hijau secara otomatis. Smart Traffic Control System (STCS) terintegrasi dengan sistem informasi geografis berbasis web (smart map) yang secara kontinu menerima informasi kepadatan (gambar terkini, jumlah kendaraan, level kepadatan), kemudian menampilkannya diatas peta Kota Pekanbaru. Solusi sistem terintegrasi ini telah diujikan pada sebuah prototipe lampu lalu lintas, menggunakan komputer mini dan miniatur kendaraan. Sistem terintegrasi ini mampu mendeteksi 9 dari 12 kendaraan, dan mampu mengirimkan data secara berkala kepada smart map. Kata kunci: deep learning; smart mobility; smart traffic control system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.