The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli O serogroups. By comparing these sequences, we identified 161 well-defined O-AGCs. Based on the wzx/wzy or wzm/wzt gene sequences, in addition to 145 singletons, 37 serogroups were placed into 16 groups. Furthermore, phylogenetic analysis of all the E. coli O-serogroup reference strains revealed that the nearly one-quarter of the 184 serogroups were found in the ST10 lineage, which may have a unique genetic background allowing a more successful exchange of O-AGCs. Our data provide a complete view of the genetic diversity of O-AGCs in E. coli showing a stronger association between host phylogenetic lineage and O-serogroup diversification than previously recognized. These data will be a valuable basis for developing a systematic molecular O-typing scheme that will allow traditional typing approaches to be linked to genomic exploration of E. coli diversity.
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) genomes contain a pathogenicity island, termed the locus of enterocyte effacement (LEE), which encodes genes involved in the formation of attaching and effacing lesions on epithelial cells. To elucidate the regulatory mechanism of the LEE genes in EHEC, an EHEC O157 genomic library was screened for clones which modulated expression of the LEE genes. From more than 5000 clones, a DNA fragment was obtained containing a perC homologue as a positive regulator for the LEE genes. In EPEC, perC is known to be part of the per operon, along with perA and perB, located on the EPEC adherence factor plasmid, which is not found in EHEC. However, the complete genome sequence of EHEC O157 Sakai strain reveals that there are five perC-like sequences, but no perA and perB, on the chromosome. These five perC homologues were characterized, and it was found that three of the homologues (renamed perC homologue pchA, pchB and pchC) encoded 104 aa proteins, and when expressed on a multicopy plasmid enhanced the expression of LEE genes. In contrast, perC homologues encoding proteins of 89 and 90 aa, renamed pchD and pchE, respectively, had no significant effect. Deletion mutants of the pch genes were constructed, and the effect on the expression of LEE-encoded type III effector proteins, such as EspA, B and D, and adhesion phenotype to HEp-2 cells was examined. Deletion of pchA or pchB, but not pchC, decreased the expression of Esp proteins and adhesion to HEp-2 cells. Such effects were more apparent with mutants carrying double deletions of pchA/pchB or pchA/pchC, suggesting that pchA/B/C are all necessary for full expression of the LEE genes and adhesion to HEp-2 cells. Further study demonstrated that the positive effect of pchA/B/C was caused by enhanced transcription of the LEE-encoded regulatory gene, ler. Introduction of a multicopy plasmid carrying each pchA/B/C gene significantly induced microcolony formation by EHEC O157 on HEp-2 cells. These results suggest that the pchABC genes are necessary for full virulence of EHEC O157.
Expression of the type III protein secretion system (TTSS), encoded in the locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC), has been shown to be controlled by various regulators. In a search for additional regulatory genes, we identified a DNA fragment containing clpX and clpP that has a positive regulatory effect on LEE expression in EHEC O157. The expression of LEE-encoded Esp proteins was significantly reduced in a clpXP deletion mutant. Deletion of grlR, a negative regulatory gene within LEE, markedly increased LEE expression even in the clpXP mutant. To verify the regulatory mechanism of GrlR expression, a chromosomal epitope-tagged allele of grlR (grlR-FLAG) was constructed. GrlR-FLAG expression was increased significantly in the clpXP deletion mutant, suggesting that the GrlR level is under the control of ClpXP, and this regulation is critical for the ClpXP-dependent expression of LEE in EHEC. Deletion of rpoS, the gene encoding a stationary-phase-inducing sigma factor that is a substrate for ClpXP protease, partially restored LEE expression in the clpXP mutant. A multicopy plasmid carrying rpoS strongly repressed expression of Esp proteins, suggesting that positive regulation by ClpXP is partially mediated through a negative effect of RpoS on LEE expression. We also found that rpoS deletion induces transcription of pchA, which encodes one of the positive regulators for LEE expression in EHEC. These results suggest that ClpXP controls expression of LEE through the regulation of RpoS and GrlR levels in EHEC.Enterohemorrhagic Escherichia coli (EHEC) strains are lifethreatening human pathogens and cause hemorrhagic colitis, bloody diarrhea, and hemolytic uremic syndrome (40). EHEC is a member of the attaching and effacing pathogens (40, 56), a group that includes enteropathogenic E. coli (EPEC) (39) and the mouse pathogen Citrobacter rodentium (45). The attaching/effacing lesion on intestinal epithelial cells is characterized by destruction of microvilli and formation of a pedestal-like structure, triggered by rearrangement of cytoskeletal proteins (30, 42). The genes essential for causing the attaching/ effacing lesion are encoded in a pathogenicity island designated the locus of enterocyte effacement (LEE). LEE consists of more than 40 genes organized into five major operons, designated LEE1 to LEE5 (6,8,43). LEE1, -2 and -3 operons contain mostly genes encoding the structural and auxiliary proteins necessary for formation of a dedicated type III protein secretion system (TTSS) (22). The LEE4 operon encodes several secreted proteins (e.g., EspA, EspB, EspD, and EspF), all of which are secreted through TTSS (28, 29, 34, 37). The LEE5 operon encodes an adhesion factor, designated intimin (23, 24), and Tir, a protein that is also translocated through TTSS and acts as a receptor for intimin at the host cell membrane (27).A transcriptional activator, Ler, is encoded by the first gene of the LEE1 operon and is essential for the expression of almost all LEE genes (9, 38). Deng et...
. The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfA O157/OI-141 and lpfA O157/OI-154 , were strongly associated with seropathotype A. The fimbrial gene lpfA O113 was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.
The gene function of the locus of enterocyte effacement (LEE) is essential for full virulence of enterohemorrhagic Escherichia coli (EHEC). Strict control of LEE gene expression is mediated by the coordinated activities of several regulatory elements. We previously reported that the ClpX/ClpP protease positively controls LEE expression by down-regulating intracellular levels of GrlR, a negative regulator of LEE gene expression. We further revealed that the negative effect of GrlR on LEE expression was mediated through GrlA, a positive regulator of LEE expression. In this study, we found that the FliC protein, a major component of flagellar filament, was overproduced in clpXP mutant EHEC, as previously reported for Salmonella. We further found that FliC expression was reduced in a clpXP grlR double mutant. To determine the mediators of this phenotype, FliC protein levels in wild-type, grlR, grlA, and grlR grlA strains were compared. Steady-state levels of FliC protein were reduced only in the grlR mutant, suggesting that positive regulation of FliC expression by GrlR is mediated by GrlA. Correspondingly, cell motility was also reduced in the grlR mutant, but not in the grlA or grlR grlA mutant. Because overexpression of grlA from a multicopy plasmid strongly represses the FliC level, as well as cell motility, we conclude that GrlA acts as a negative regulator of flagellar-gene expression. The fact that an EHEC strain constitutively expressing FlhD/FlhC cannot adhere to HeLa cells leads us to hypothesize that GrlA-dependent repression of the flagellar regulon is important for efficient cell adhesion of EHEC to host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.