In this study, we investigated the carcinogenic response of transgenic mice carrying the human prototype c-Ha-ras gene, namely Tg rasH2/CB6F1 mice, to various genotoxic carcinogens and compared it with that of control non-transgenic CB6F1 mice (non-Tg mice). The present studies were conducted as the first step in the evaluation of the Tg rasH2/CB6F1 mouse as a model for the rapid carcinogenicity testing system. Short-term (< or = 6 months) rapid carcinogenicity tests of various genotoxic carcinogens, 4-nitroquinoline-1-oxide, cyclophosphamide, N,N-diethylnitrosamine, N-methyl-N-nitrosourea, N-methyl-N'-nitro-N-nitrosoguanidine and methylazoxymethanol, revealed that Tg rasH2/CB6F1 mice are more susceptible to these genotoxic carcinogens than control non-Tg mice. Tg rasH2/CB6F1 mice developed tumors more rapidly compared with non-Tg mice. Malignant tumors were observed only in the carcinogen-treated Tg rasH2/CB6F1 mice, but not in non-Tg mice treated with the same carcinogens. Each carcinogen induced tumors in corresponding target tissues of the Tg rasH2/CB6F1 mice. Only a very few lung adenomas but no other tumors were seen as spontaneous tumors during the 6 months of carcinogenicity tests. These results demonstrate that more rapid onset and higher incidence of more malignant tumors can be expected with high probability after treatment with various genotoxic carcinogens in the Tg rasH2/CB6F1 mice than in control non-Tg mice. The Tg rasH2/CB6F1 mouse seems to be a promising candidate as an animal model for the development of a rapid carcinogenicity testing system.
L-buthionine (S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, was administered to mice via drinking water for 14 days in order to establish an animal model with continuously depleted levels of GSH. No toxicity was observed at 20 mM BSO, even though a significant decrease in liver weight was observed at 30 mM BSO. GSH levels in the liver, kidney, brain, lung, heart, spleen, pancreas, small intestine, large intestine, skeletal muscle, plasma and blood cells from mice given 20 mM of BSO were all less than those from the control mice continuously throughout a 24-hr period. The ratios of the GSH levels to that of the control were 46.4% and 16.7% in the liver and kidney, respectively, suggesting a decrease in GSH conjugation activity in vivo by GSH depletion. Liver cytochrome P450 content and UDP-glucuronosyltransferase activity to p-nitrophenol were not influenced by the BSO dosing. To confirm the adequacy of this GSH-depletion model, 0.125 or 0.25% of acetaminophen (APAP) was administered via diet to this model for 14 days. Nine out of the ten mice given both 20 mM BSO and 0.25% APAP died on Day 2, and remarkable necrosis was observed in the hepatocytes and renal tubular epithelium. Moreover, focal necrosis of hepatocytes with proliferation of fibroblasts was observed on Day 15 in some mice coadministered 20 mM BSO and 0.125% APAP. However, no toxicity was observed in mice given APAP alone. Based on these results, a mouse given 20 mM of BSO via drinking water for 14 days was concluded to be an animal model with continuously depleted levels of GSH in various organs without toxicity. This model shows high susceptibility to toxicity induced by chemicals which are metabolized to electrophilic and reactive metabolite(s), such as APAP.
Recently, it was reported that the intraperitoneal administration of 30 mg/kg/day troglitazone to heterozygous superoxide dismutase 2 gene knockout (Sod2þ/-) mice for twenty-eight days caused liver injury, manifested by increased serum ALT activity and hepatic necrosis. Therefore, we evaluated the reproducibility of troglitazone-induced liver injury in Sod2þ/-mice, as well as their validity as an animal model with higher sensitivity to mitochondrial toxicity by single-dose treatment with acetaminophen in Sod2þ/-mice. Although we conducted a repeated dose toxicity study in Sod2þ/-mice treated orally with 300 mg/kg/day troglitazone for twenty-eight days, no hepatocellular necrosis was observed in our study. On the other hand, six hours and twenty-four hours after an administration of 300 mg/kg acetaminophen, plasma ALT activity was significantly increased in Sod2þ/-mice, compared to wild-type mice. In particular, six hours after administration, hepatic centrilobular necrosis was observed only in Sod2þ/-mice. These results suggest that Sod2þ/-mice are valuable as an animal model with higher sensitivity to mitochondrial toxicity. On the other hand, it was suggested that the mitochondrial damage alone might not be the major cause of the troglitazone-induced idiosyncratic liver injury observed in humans.
Phenobarbital (PB) increases serum total cholesterol levels in rodents and humans. To investigate the underlying molecular mechanisms, we performed a microarray analysis on liver of rats treated repeatedly with 100 mg/kg PB, and examined the serum blood chemistry. The serum concentration of non-esterified fatty acids was decreased from day 1 to day 14 except for day 7, and that of cholesterol was increased from day 4 to day 14. The serum concentration of total ketone bodies was increased on day 7, and that of triglycerides was decreased on day 14. Transcript content of glycolytic genes was decreased by PB treatments, while that of lipoprotein lipase was continuously increased, suggesting a notion that repetitive PB treatments impaired glycolysis and stimulated lipolysis in the liver. The hypothesis was examined by using a previously reported flux-balance model. The increase in mRNA content of malic enzyme after the PB treatment agreed well with the flux-balance model result, suggesting the validity of our hypothesis. The findings also suggested that there was an abundance of acetyl-CoA and shortage of glycolytic products after the repeated PB treatments. Although ketogenesis would normally occur under such cellular conditions, it was only weakly observed after the repeated PB treatments, presumably owing to a decrease in HMG-CoA synthase mRNA content. On the other hand, the mRNA content of several cholesterogenic genes was slightly induced by PB treatments. Thus, serum chemistry and microarray results suggested that repeated PB treatments induced cholesterogenesis in rat livers, which may have contributed to the elevation of the serum total cholesterol concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.