The pandemic caused by a new type of influenza virus, pandemic H1N1 (2009) influenza virus A (AH1pdm), has had a major worldwide impact. Since hemagglutinin (HA) genes are among the most specific genes in the influenza virus genome, AH1pdm can be definitively diagnosed by viral gene analysis targeting the HA genes. This type of analysis, however, cannot be easily performed in clinical settings. While commercially available rapid diagnosis kits (RDKs) based on immunochromatography can be used to detect nucleoproteins (NPs) of influenza A and B viruses in clinical samples, there are no such kits that are specific for AH1pdm. We show here that an RDK using a combination of monoclonal antibodies against NP can be used to specifically detect AH1pdm. The RDK recognized AH1pdm virus isolates but did not recognize seasonal H1N1 and H3N2 and influenza B viruses, indicating that the specificity of the RDK is 100%. A parallel comparison of RDK with a commercial influenza A/B virus kit revealed that both types of kits had equal sensitivities in detecting their respective viruses. Preliminary evaluation of clinical samples from 5 individuals with PCR-confirmed human AH1pdm infection showed that the RDK was positive for all samples, with the same detection intensity as that of a commercial influenza A/B virus kit. This RDK, together with a new vaccine and the stockpiling of anti-influenza drugs, will make aggressive measures to contain AH1pdm infections possible.
Introduction Rapid antigen tests are convenient for diagnosing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they have lower sensitivities than nucleic acid amplification tests. In this study, we evaluated the diagnostic performance of Quick Chaser ® Auto SARS-CoV-2, a novel digital immunochromatographic assay that is expected to have higher sensitivity than conventional antigen tests. Methods A prospective observational study was conducted between February 8 and March 24, 2021. We simultaneously obtained two nasopharyngeal samples, one for evaluation with the QuickChaser ® Auto SARS-CoV-2 antigen test and the other for assessment with reverse transcription PCR (RT-PCR), considered the gold-standard reference test. The limit of detection (LOD) of the new antigen test was compared with those of four other commercially available rapid antigen tests. Results A total of 1401 samples were analyzed. SARS-CoV-2 was detected by reference RT-PCR in 83 (5.9%) samples, of which 36 (43.4%) were collected from symptomatic patients. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.7% (95% confidence interval (CI): 64.0–83.6%), 99.8% (95% CI: 99.5–100%), 96.9% (95% CI: 89.2–99.6%), and 98.4% (95% CI: 97.6–99.0%), respectively. When limited to samples with a cycle threshold (Ct) <30 or those from symptomatic patients, the sensitivity increased to 98.3% and 88.9%, respectively. The QuickChaser ® Auto SARS-CoV-2 detected 34–120 copies/test, which indicated greater sensitivity than the other rapid antigen tests. Conclusions QuickChaser ® Auto SARS-CoV-2 showed sufficient sensitivity and specificity in clinical samples of symptomatic patients. The sensitivity was comparable to RT-PCR in samples with Ct<30.
Introduction Smart Gene is a point-of-care (POC)-type automated molecular testing platform that can be performed with 1 min minute of hands-on-time. Smart Gene SARS-CoV-2 is a newly developed Smart Gene molecular assay for the detection of SARS-CoV-2. The analytical and clinical performance of Smart Gene SARS-CoV-2 has not been evaluated. Methods Nasopharyngeal and anterior nasal samples were prospectively collected from subjects referred to the local PCR center from March 25 to July 5, 2021. Two swabs were simultaneously obtained for the Smart Gene SARS-CoV-2 assay and the reference real-time RT-PCR assay, and the results of Smart Gene SARS-CoV-2 were compared to the reference real-time RT-PCR assay. Results Among a total of 1150 samples, 68 of 791 nasopharyngeal samples and 51 of 359 anterior nasal samples were positive for SARS-CoV-2 in the reference real-time RT-PCR assay. In the testing of nasopharyngeal samples, Smart Gene SARS-CoV-2 showed the total, positive and negative concordance of 99.2% (95% confidence interval [CI]: 98.4–99.7%), 94.1% (95% CI: 85.6–98.4%) and 99.7% (95% CI: 99.0–100%), respectively. For anterior nasal samples, Smart Gene SARS-CoV-2 showed the total, positive and negative concordance of 98.9% (95% CI: 97.2–99.7%), 98.0% (95% CI: 89.6–100%) and 99.0% (95% CI: 97.2–99.8%), respectively. In total, 5 samples were positive in the reference real-time RT-PCR assay and negative in the Smart Gene SARS-CoV-2 assay, whereas 5 samples were negative in the reference real-time RT-PCR assay and positive in the Smart Gene SARS-CoV-2 assay. Conclusion Smart Gene SARS-CoV-2 showed sufficient analytical performance for the detection of SARS-CoV-2 in nasopharyngeal and anterior nasal samples.
Please cite this paper as: Miyoshi‐Akiyama et al. (2012) Discrimination of influenza A subtype by antibodies recognizing host‐specific amino acids in the viral nucleoprotein. Influenza and Other Respiratory Viruses 6(6), 434–441. Background Nucleoprotein (NP) of influenza viruses is utilized to differentiate between the A, B, and C viral serotypes. The availability of influenza genome sequence data has allowed us to identify specific amino acids at particular positions in viral proteins, including NP, known as “signature residues,” which can be used to discriminate human influenza A viruses from H5N1 highly pathogenic avian influenza in human cases (HPAI) and pandemic H1N1(2009) (H1N1/2009) viruses. Methods Screening and epitope mapping of monoclonal antibodies (mAb) against NP of influenza A, which reacted differently with NP from human influenza A virus from HPAI and H1N1/2009 A virus. To identify the epitope(s) responsible for the discrimination of viral NP by mAbs, we prepared mutant NP proteins in the 293 cell expression system because some of the mAbs reacted with non‐linear epitopes. Results and Conclusions In the present study, we identified 3 mAbs. The results of epitope mapping showed that the epitopes were located at the signature residues. These results indicated that signature residues of NP could discriminate influenza A viruses from different origin.
Introduction Rapid antigen tests are convenient for diagnosing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they have lower sensitivities than nucleic acid amplification tests. In this study, we evaluated the diagnostic performance of Quick Chaser Auto SARS-CoV-2, a novel digital immunochromatographic assay that is expected to have higher sensitivity than conventional antigen tests. Methods A prospective observational study was conducted between February 8 and March 24, 2021. We simultaneously obtained two nasopharyngeal samples, one for evaluation with the QuickChaser Auto SARS-CoV-2 antigen test and the other for assessment with reverse transcription PCR (RT-PCR), considered the gold-standard reference test. The limit of detection (LOD) of the new antigen test was compared with those of four other commercially available rapid antigen tests. Results A total of 1401 samples were analyzed. SARS-CoV-2 was detected by reference RT-PCR in 83 (5.9%) samples, of which 36 (43.4%) were collected from symptomatic patients. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.7% (95% confidence interval (CI): 64.0-83.6%), 99.8% (95% CI: 99.5-100%), 96.9% (95% CI: 89.2-99.6%), and 98.4% (95% CI: 97.6-99.0%), respectively. When limited to samples with a cycle threshold (Ct) <30 or those from symptomatic patients, the sensitivity increased to 98.3% and 88.9%, respectively. The QuickChaser Auto SARS-CoV-2 detected 34-120 copies/test, which indicated greater sensitivity than the other rapid antigen tests. Conclusions QuickChaser Auto SARS-CoV-2 showed sufficient sensitivity and specificity in clinical samples of symptomatic patients. The sensitivity was comparable to RT-PCR in samples with Ct<30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.