Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007–2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a ‘global priority’ for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022.
Information on spatial and temporal variation in abundance is crucial for effective management of wildlife. Yet abundance estimates for the Critically Endangered Sumatran tiger Panthera tigris sumatrae are lacking from Riau, the province historically believed to hold the largest percentage of this subspecies. Recently, this area has had one of the highest global rates of deforestation. Using camera traps we investigated tiger abundance across peatland, flat lowland, and hilly lowland forest types in the province, and over time, in the newly established Tesso Nilo National Park, central Sumatra. We estimated densities using spatially explicit capture-recapture, calculated with DENSITY, and traditional capture-recapture models, calculated with CAPTURE. With spatially explicit capture-recapture the lowest tiger density (0.34 ± SE 0.24 per 100 km 2 ) was estimated in the hilly lowland forest of capture-recapture the spatially explicit capture-recapture approach resulted in estimates 50% lower. Estimates of tiger density from this study were lower than most previous estimates in other parts of Sumatra. High levels of human activity in the area appear to limit tigers. The results of this study, which covered areas and habitat types not previously surveyed, are important for overall population estimates across the island, provide insight into the response of carnivores to habitat loss, and are relevant to the interventions needed to save the tiger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.