In this report, we propose a novel technique for identifying and analyzing diverse nanoscale carbon allotropes using scanning electron micrographs. By precisely controlling the quenching rates of undercooled molten carbon through laser irradiation, we achieved the formation of microdiamonds, nanodiamonds, and Q-carbon films. However, standard laser irradiation without proper undercooling control leads to the formation of sparsely located diverse carbon polymorphs, hindering their discovery and classification through manual analyses. To address this challenge, we applied transfer-learning approaches using convolutional neural networks and computer vision techniques to achieve allotrope discovery even with sparse spatial presence. Our method achieved high accuracy rates of 92% for Q-carbon identification and 94% for distinguishing it from nanodiamonds. By leveraging scanning electron micrographs and precise undercooling control, our technique enables the efficient identification and characterization of nanoscale carbon structures. This research significantly contributes to the advancement of the field, providing automated tools for Q-materials and carbon polymorph identification. It opens up new opportunities for the further exploration of these materials in various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.