This study describes the formation of multicomponent crystal (MCC) of desloratadine (DES). The objective of this study was to discover the new pharmaceutical MCC of DES using several coformers. The MCC synthesis was performed between DES and 26 coformers using an equimolar ratio with a solvent evaporation technique. The selection of the appropriate solvent was carried out using 12 solvents. The preview of the MCC of DES was performed using polarized light microscopy (PLM). The formation of MCC was confirmed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The accelerated stability of MCC at 40 °C and relative humidity of 75% was investigated using PXRD and FTIR. Depending on the prior evaluation, DES and benzoic acid (BA) formed the MCC. PLM and SEM results showed that crystal habit of combination between DES and BA differed from the constituent components. Moreover, the diffractogram pattern of DES-BA was distinct from the constituent components. The DSC thermogram showed a new peak which was distinct from both constituent components. The FTIR study proved a new spectrum. All characterizations indicated that a new solid crystal was formed, ensuring the MCC formation. In addition, DES-BA MCC had both chemical and physical stabilities for a period of 4 months.
Low physical stability is the limitation of the widespread use of amorphous drugs. The co-amorphous drug system is a new and emerging method for preparing a stable amorphous form. Co-amorphous is a single-phase amorphous multicomponent system consisting of two or more small molecules that are a combination of drugs or drugs and excipients. The co-amorphous system that uses benzoic acid (BA) as an excipient was studied to improve the physical stability, dissolution, and solubility of desloratadine (DES). In this study, the co-amorphous formation of DES and BA (DES–BA) was prepared by melt-quenching method and characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and polarized light microscopy (PLM). Dissolution, solubility, and physical stability profiles of DES–BA were determined. The DES crystals were converted into DES–BA co-amorphous form to reveal the molecular interactions between DES and BA. Solid-state analysis proved that the co-amorphous DES–BA system (1:1) is amorphous and homogeneous. The DSC experiment showed that the glass transition temperature (Tg) of tested DES–BA co-amorphous had a higher single Tg compared to the amorphous DES. FTIR revealed strong interactions, especially salt formation. The dissolution rate and solubility of co-amorphous DES–BA (1:1) obtained were larger than the DES in crystalline form. The PXRD technique was used to assess physical stability for three months at 40 °C with 75% RH. The DES–BA co-amorphous system demonstrated better physical stability than a single form of amorphous DES. Co-amorphous DES–BA has demonstrated the potential for improving solid-state stability, as the formation of DES–BA co-amorphous salt increased solubility and dissolution when compared to pure crystalline DES. This study also demonstrated the possibility for developing a DES–BA co-amorphous system toward oral formulations to improve DES solubility and bioavailability.
The aim of this study was to investigate the acute and subchronic toxicity of a film formulation that combines κ-Carrageenan and konjac glucomannan for soft capsule application. For the acute toxicity study, a dose of 2000 mg/kg body weight (bw) of the film suspension was administered orally to rats. The animals were observed for toxic symptoms and mortality daily for 14 days. In a subchronic toxicity study, the film suspension, at doses of 10, 30 and 75 mg/kg bw for 28 days, were orally administered to rats. After 28 days, the rats were sacrificed for hematological, biochemical and histological examination. In the acute toxicity study, neither signs of toxicity nor death among the rats were observed for up to 14 days of the experimental period. The results of the subchronic toxicity study show that there were no significant changes observed in the hematology and organ histology. Some alterations to the relative organ weight and blood biochemistry were observed, but they were considered to be temporary effects and not an indication of toxic effects. The overall findings of this study indicate that the film formulation of κ-Carrageenan and konjac glucomannan is non-toxic up to a dose of 75 mg/kg bw, which could be considered a safe dose for soft capsule application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.